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Abstract 

The article deals with problem solving, determining the potential throughput of pressure pipelines of a closed 
irrigation network. A fundamentally new method of calculating the regularity of velocity distribution in round 
pipes was derived, on the basis of which a new formula was obtained for determining the flow resistance in 
pipes, which makes it possible to reliably determine the throughput capacity of pipelines in a closed irrigation 
network. Consequently, in the proposed equation (16) and resulting from it by expressions using formula 
(23), the existing drawbacks are completely absent, which indicates a more correct solution of the problem in 
this case. It should be recognized that the basic analysis conducted here is of interest in comparing the results 
of the calculation using formulas (20) and (23), since the carrying capacity of the pipeline largely depends on 
the value of the coefficient λ. For this, when calculating, we considered pipes of two diameters d=100 mm and 
d = 1000 mm. Note that pipes with a diameter of d=100 mm are most often used when installing progressive 
irrigation techniques. Calculation for pipes with d =1000 mm was considered for comparative evaluation of λ 
values. 
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Introduction 

The increasing use of closed irrigation systems in 
agricultural production necessitates a reliable 
determination of the carrying capacity of their pipelines, 
which is of interest in the design and construction of these 
systems. Known proposals for solving this problem have 
certain disadvantages, leading to various kinds of errors, 
the results they produce. This situation necessitates deep 
theoretical studies for more reliable determination of the 
throughput capacity of pipelines of closed irrigation 

systems. To solve this problem, first of all, we will focus 
on the analysis of known proposals for determining the 
capacity of pipelines of closed irrigation networks, which 
is described below. Existing methods for calculating the 
velocity distribution in the turbulent motion of water in a 
circular pipe. The regularity of the velocity distribution is 
of fundamental importance in solving practical and 
theoretical problems of flow hydraulics in pressure 
pipelines. It also serves as a starting point for assessing 
the resistance to flow in pipelines. 
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Experimental and theoretical studies of the distribution of 
velocities over the cross section of pipelines and 
resistance to flow in them are devoted to work [1-8]. 
 

Research courses 

The logarithmic and steppe laws of velocity distribution 
have found wider application in practice, which will be 
discussed in some detail below. 
 
Logarithmic velocity distribution law: As we see it, the 
most reliable basis for deriving the velocity distribution 
equation would be the Reynolds equations/10/. However, 
this system of equations does not allow solving the 
problem in view of the fact that it does not close and the 
solution of this issue is encountered with very great 
difficulties. 
 
In principle, the logarithmic velocity distribution law is 
based on the hypothesis of Prandtai L [6] that the length 
of the displacement path (the relationship between the 
turbulent exchange coefficient and the velocity field) at 
the wall is directly proportional to the distance "y" from 
the wall, i.e. e = xy. 
 
In turn, Landau LD and Livshits EM [9] / 11 /, from 
considerations of dimension, and Nikuradze I [10] /12/, 
on the basis of experimental data in pipes with artificial 
roughness, arrived at the velocity distribution equation in 
the following form: 
 

𝑈 𝑈 ∗ = 1 𝑥 ln𝑟 ∆ + N   (1) 
 

Where 
U - Speed at various points of the pipe radius, m / s; 
x is the Pocket coefficient; x = 0.4 r is the current radius of 
the pipe, m; 
∆ is the height of the protrusions of the pipe roughness, 
m; 
N is some constant number determined from experience; 
U * = √𝜏 / 𝜌 - dynamic speed, m/s; 
𝜏 - friction stress on the wall, t/m2; 
𝜌 - density, t/m3. 
 
The value of the constant N in the formula (1) is 
expressed as the ratio 
 

N = 𝑈∆ 𝑈 ∗    (2) 
 

Where: 𝑈∆ is the given speed at the height of the 
protrusions of the roughness of the pipe walls, m/s; 
 
For pipes, various studies have obtained different values 
of constant N. The most reasonable of them can be 
considered N = 8.5, obtained by Nikuradze I [10] on the 

basis of extensive and carefully set experiments. Then, 
taking the value x = 0.4 and moving from natural to 
decimal logarithms, equation (1) can be reduced to 
 

𝑈 𝑈 ∗ = 5.75 ℓℊ 𝑟 ∆ + 8.5    (3) 
 
The logarithmic law of velocity distribution (3), as shown 
by studies /13/, well satisfies the experience within the 
limits of the pipe radius closest to the wall 0.2. Therefore, 
its application throughout the entire stream is not always 
justified. 
 
In addition, the distance from the wall, where the local 
averaged velocity equals the average velocity on the 
vertical from (1) is obtained in the form, 
 

𝑟𝑏 = 𝑟𝑜 𝑒 = 0.37𝑟𝑜   (4) 
 

Where: 
𝑟𝑜 - pipe radius, m; 
e - Neprevo number (e = 2.72). 
 
As can be seen from (4) the distance from the wall 𝑟𝑒, 
where the local averaged speed equals the average 
velocity on the vertical does not depend on the resistance 
of the pipe and, consequently, the shape of the velocity 
distribution diagram, which is also a disadvantage of the 
logarithmic law. As can be seen, the logarithmic law of 
velocity distribution along the pipe radius has a number 
of significant drawbacks that negatively affect the final 
results of the problems solved with its help. Power law of 
velocity distribution. 
 
Along with the logithmic general fame, the power law of 
velocity distribution has the following general form /13/ 
 

𝑈 𝑈𝑜 = (𝑟 𝑟0) 1 / α   (5) 
 

Here, 
Uo - speed on the pipe axis, m / s; 
ro is the pipe radius, m; 
r is the current radius, m; 
α is the exponent of the velocity distribution curve 
equation. 
 
Various studies have shown that using equation (5), one 
can solve a number of problems of kinematics and 
resistance to flow in pipelines. To do this, you need to 
know the value of the parameter α, 5 which is a variable. 
 
To this end, a number of researchers dealt with the 
question of determining the value of α, which obtained 
various types of formulas for α. Moreover, some authors 
associated the value of α with the roughness coefficient, 
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others with the Chezy coefficient, the third with the 
absolute value of roughness and depth of flow, etc. 
 
Regarding equation (5), it can be noted that in addition to 
the different approaches to determining the value of α 
and the ambiguity of their end results, its essential 
drawback is that it responds well to the main thickness of 
the stream, does not correspond to it in the bottom layer. 
 

From the above brief analysis of equations (1), (3) and 
(5), their shortcomings become apparent and, therefore, 
the need for further research in order to obtain more 
perfect patterns free from the shortcomings of both 
logarithmic and power velocity distribution laws. Such an 
attempt was made by Doctor of Technical Sciences 
Nureyev ChG [11] in work / 14 /. However, he obtained 
only a new equation for the distribution of velocities 
along the radius of a power-type pipe, which differs 
significantly from (5). In solving this problem, Nuriev ChG 
[11] emanates / 59 / from the parabola equation in 
general form (Figure 1): 
 

(Ux - UΔ) α = 2P (ro-r)    (6) 
 

As a result of a series of transformations, he comes to the 
equation of the velocity distribution along the radius at 
the boundaries between the pipe axis and the height of 
the roughness protrusions on its wall. This equation has 
the following form: 
 

Uη = Uo - 3.75 𝑎 𝑎 − 2 [1- (1-η) 1/2] ∙ U *   (7) 
 

Here, the following notation: 
Uo - speed on the pipe axis, m / s; 
 η = r / ro - relative radius: 
 

a = (1+ 1 2) (2+ 1 2)   (8) 
 

The remaining notation is the same. Next Nuriyev CH G 
[11] found that the distance from the axis of the pipe, 
where the local averaged velocity equals the average 
velocity on the vertical, is expressed as: 
 

ηsr = 1 - (2 𝑑) 1 / α    (9) 
 

If we bear in mind that the author (7) obtained the 
connection between α and the resistance coefficient 
(Darcy) λ in the form / 14 /: 
 

1 𝛼 = √2.25−4.07 √1−2.99 √-1.5   (10) 
 

U Δ ro r Ux I Δ Uo 
 
 
 

 

 

Figure 1: Calculation scheme. 

 
This can be stated: formula (9) expresses the dependence 
of the distance on the pipe axis, where the local average 
speed is equal to the average speed on the vertical, on the 
drag coefficient λ, therefore, on the type of the velocity 
distribution diagram and therefore is variable. This and 7 
is one of the positive distinctive features of the power law 
of velocity distribution from the logarithmic one. 
 
On the other hand, when η = 1 (which corresponds to the 
height of the roughness protrusions on the pipe wall), the 
value of the bottom velocity at the height of the roughness 
projections is obtained from (7): 
 

UΔ = Uo - 3.75 𝑎 𝑎 − 2 U *   (11) 
 
This position in the previously proposed equation (5) 
corresponds to r = 0. At the same time, from the 
expression (5) we get UΔ = 0, which does not correspond 
to the real state of things, since the condition UΔ всегда 0 
always holds. Thus, equation (7) derived by Nuriev ChG 
[11], is free from this lack of formula (5), which indicates 
a higher confidence (7). 
 
It should be noted that the received H.G. The Nureyev 
pattern of velocity distribution (7) is compared with the 
data of laboratory studies of Nikuradze [10] / 12 /, which 
showed their very close coincidence. 
 
Unfortunately, Doctor of Technical Sciences Nureyev Ch G 
[11] did not further develop work on the solution of this 
problem and limited himself to the above results, which 
can serve as a basis for further research in this direction. 
As noted above, Ch.G. Nuriev [11] considered the problem 
of the velocity distribution in the flow region between the 
pipe axis and the height of the roughness projections, i.e. 
without taking into account the movement of water 
within the height of the roughness of the ridges. We 
consider the next section of this paper to consider the 
solution to this problem. Regularity of the distribution of 
velocities, taking into account the roughness. 
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To solve this problem, we take the equation of the velocity 
distribution in the form (Figure 1) 
 

Ur = Uo (1- 𝑟 𝑟0 + 𝛥) 1 / α   (12) 
 

Here 
Δ - the height of the protrusions of the roughness on the 
pipe wall; m; 
𝑟 - measured from the axis of the pipe. 
At the same time, we assume that the speed at the base of 
the roughness protrusions is zero and that the velocity 
distribution diagram intersects the conditional line 
running along the tops of the roughness equal to the end 
of the segment, measured from the origin (Figure 1). 
When 𝑟 = ro, we have Ur = UΔ and equation (12) takes the 
form 
 

UΔ = Uo (𝛥 𝑟𝑜 + 𝛥) 1 / α   (13) 
 

Dividing (12) by (13) and deciding on Ur we get 
 

Ur = UΔ (1 + 𝑟𝑜 − 𝑟 𝛥) 1 / α   (14) 
 

Further, from the joint solution (12) with N = 8.45 and 
(11) we find 
 

𝑈𝑜 𝑈𝛥 = 12.2𝑎 − 16.9 8.45 (𝑎 − 2)   (15) 
 

In view of (15), equation (14) is reduced to the form 
 

𝑈𝑟 𝑈о = 8.45 (𝑎 − 2) 12.2 𝑎 − 16.9 (1 + 𝑟𝑜 − 𝑟 𝛥) 1 / α 
  (16) 

 
This is the velocity distribution equation in a circular 
pipe, taking into account the height of the roughness 
protrusions. 
 
As a control of compliance with the boundary conditions 
from (16) with 𝑟 = 𝑟𝑜 + 𝛥, i.e. at the base of the roughness 
protrusions, it turns out Ur = 0; 
 
When 𝑟 = 𝑟𝑜, which corresponds to the height of the 
protrusions of the roughness, Ur = UΔ, and equation (16) 
takes the form 
 

𝑈𝛥 𝑈 o = 8.45 (𝑎−2) 12.2−16.9   (17) 
 

One of the important parameters in the velocity 
distribution equation (16) is the exponent α, which, as 
noted above, has a variable value. Therefore has a great 
theoretical e and practical value determining the value of 
this parameter. To solve this problem, we use the 
boundary conditions of equation (16). So, when 𝑟 = 0, the 
speed Ur corresponds to the speed on the pipe axis, i.e. Ur 
= Uo holds and Eq. (16) is expressed as follows: 

1 = 8.45 (𝑎−2) 12.2𝑎−16.9 (1 + 𝑟𝑜 𝛥) 1 / α   (18) 
 

Logarithm of expression (18) leads us to the equation 
 
ℓℊ (𝑟𝑜 − 𝛥 𝛥) = αℓℊ 12, 2𝑎−16.9 8.45 (𝑎−2)   (19) 

 
 Still a = (1+ 1) (2+ 1 𝛼) Equation (19) makes it possible to 
determine the value. However, due to the complexity of 
this expression, an analytical determination of the value is 
difficult, since solving equation (19) is a selection. 
Therefore, equation (19) 
 

 

Figure 2: Graph of α = ƒ (𝑟𝑜 − 𝛥 𝛥) for pressure 
pipelines. 

 
 
Resistance to flow in round pipes. 
Reliable determination of the coefficient of resistance to 
flow movement depends on the degree of accuracy of the 
velocity distribution source for this equation along the 
pipe radius. Up to the present time for a fully developed 
turbulent flow, i.e. for the square domain of resistance, 
the logarithmic velocity distribution law was generally 
taken as the initial one. 
 
From this law, taking into account Nikuradze’s [10] 
experimental refinement, an expression for the coefficient 
λ is obtained in the form: 
 

1 √𝜆 = 2ℓℊ 𝑟𝑜 𝛥 + 1.74     (20) 
 
This dependence will be used by us in the future to 
estimate the throughput of the pipeline in comparison 
with the dependence we recommend for determining the 
Darcy coefficient λ. 
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To solve this problem, we use the well-known expression 
/ 13 / 

12 Uo = Ucp + 3.75U *   (21) 
 
Then equating (11) to (13) subject to (21) and the ratio 

 
𝑈𝑐𝑝 𝑈 ∗ = 2√2 √𝜆   (22) 

 
After simple transformations, it is possible to obtain a 
formula for determining the value of the coefficient of 
hydraulic friction (resistance) λ in the following form: 

 
1 √𝜆 = 1.33 {𝑎 (𝑎 − 2) [1– (𝛥 𝑟𝑜 + 𝛥) 1 / 𝛼 - 1} 

  (23) 
 
Here α is determined from the graph 
Figure 2 with a known value of ℓℊ 𝑟𝑜−𝛥 𝛥, and the value of 
α is from expression (8). Thus, we obtained a completely 
new equation (23) for determining the value of the 
coefficient of hydraulic friction λ, which makes it possible 
to obtain more reliable and real values of this coefficient. 
 
Equation (23) makes it possible to determine the value of 
the coefficient of hydraulic friction (Darcy) for pipes of 
any diameters at known heights of protrusions of their 
roughness. 
 
The reliability of equation (23) is indirectly confirmed by 
the fact that the velocity distribution equation (7) quite 
accurately corresponds to the real velocity distribution 
over the cross section of the pipe, obtained by Nikuradze 
[10] as a result of carefully set up experimental studies on 
their measurement. As for equation (16), it is a 
development of equation (7), taking into account the flow 
zone within the height of the roughness protrusions. 
 
Comparison of the results of the calculation of the 
resistance coefficient for various formulas as noted above, 
one of the main parameters of the reliable determination, 
which determines the accuracy of determining the flow of 
water, is the channel resistance coefficient to flow (Darcy 
coefficient) λ. This coefficient, based on the logarithmic 
velocity distribution law (16), is derived from equation 
(23). If we analyze these formulas, we can see that for 
smooth pipes, when Δ = 0, from logarithm (20) we get λ = 
0, which is impossible, since there are no absolutely 
smooth surfaces, especially the walls of pipes. As for our 
equation (23), here, at Δ = 0, we have an expression for 
determining the resistance of the flow in smooth pipes in 
the form 
 

1 √𝜆 = 2.66 a – 2    (24) 
 
In this expression, the viscosity characteristics of the flow 
come into play and the value of λ included in (8) must be 
determined taking these characteristics into account. 
However, this issue is not considered in this paper. This 
circumstance also testifies to the imperfection of the 
logarithmic velocity distribution law and formula (20) 
that follows from it for definition. 
 
But in our equation (16) and expression (23), which 
follows from it, these deficiencies are completely absent, 
which indicates a more correct solution of the problem in 
this case. Based on this brief but fundamental analysis, it 
is of interest to compare the calculation results using 
formulas (20) and (23), since the carrying capacity of the 
pipeline largely depends on the value of the coefficient λ. 
For the calculation we consider pipes of two diameters d 
= 100 mm and d = 1000 mm. Note that pipes with a 
diameter of d = 100 mm are most often used when 
installing progressive irrigation techniques. 
 
Calculation for pipes with d = 1000 mm 14 is considered 
for comparative evaluation of λ values. 
 
Pipes of such diameter in our country are also often used 
for water supply and other purposes. In the calculations 
we consider several options with different heights of the 
protrusions of the roughness Δ; 0.01; 0,005; 0.001; 
0.0005; and 0, 0001 m. To determine the value of λ of the 
formula (20) and (23), we will respectively give the form: 
 
λ = 1 (2ℓℊ𝑟𝑜 𝛥 + 1.74) 2 (25) λ = 0.565 {(𝑎 − 2) [1– (𝛥 𝑟𝑜 + 

𝛥) 12] 𝑎– ((𝑎 − 2) [1 (𝛥 𝑟𝑜 + 𝛥) 12]} 2  (26) 
 
Then for a pipe with d = 100 mm (𝑟𝑜 = 50 mm) with Δ = 
0.01 m, by the formula (25) we find λ = 1 (2ℓℊ0.05 0.01 
+1.74) 2 = 0.1 to determine the value λ by the formula 
(26) it is necessary to know the value of the index α. 
Therefore, knowing 𝑟𝑜 = 0.05 m and Δ = 0.01 m, we find 
ℓℊ 𝑟𝑜 + 𝛥 𝛥 = ℓℊ 0.05 + 0.01 0.01 = 0.778 knowing ℓℊ 𝑟𝑜 + 
𝛥 𝛥 = 0.778, from the graph in figure 2 we find α = 2.15. 
 
Then from (8) we will have α = (1 + 1 2, 15) (2+ 1 2, 15) = 
3.6 
 
Next, using equation (26), we determine the value of the 
coefficient λ: λ = 0.565 {(3.6–2) [1– (0.01 0.05 + 0.01) 1 / 
2.15 3.6– (3, 6−2) [1− (0.01 0.05 + 0.01) 1 / 2.15} 2 = 
0.064 15 Calculate, thus the values of λ by formulas (25) 
and (26) with d = 100 m are given in Table 1  
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Δ. м 
𝒓𝒐

𝚫
 

𝒓𝒐 +  𝜟

𝜟
 ℓ 

𝒓𝒐+ 𝜟

𝜟
 α а 

formula λ 
(25) (26) 

0.01 5 6 0.778 2.15 3.60 0.1000 0.064 
0.05 10 11 1.040 2.50 3.20 0.070 0.043 

0.001 50 51 1.708 4.00 2.81 0.038 0.027 
0.0005 100 101 2.000 4.40 2.73 0.030 0.025 
0.0001 500 501 2.700 5.60 2.57 0.020 0.017 

Table 1: Calculate, thus the values of λ. 
 
It can be seen that in all cases the value of the friction 
resistance coefficients λ by our formula (26) is less than 
that by formula (25), although with a decrease in the 
magnitude of the roughness protrusions, λ determined by 
both formulas approach each other. 
Consequently, the throughput of the same pipelines 
according to our formula (26) is obtained more than by 

formula (25), since λ when determining the water flow is 
included in the denominator of the equation 
Q = W ∙ Vcp = W √ 8 𝑔 𝜆 ∙ 𝑖𝑟𝑜   (27) 
 
Similar calculations are made for pipes with a diameter of 
d = 1000mm. The results are shown in Table 2. 

 

Δ. м 
ro

Δ
 

ro +  Δ

Δ
 ℓℊ

ro+ Δ

Δ
 α а 

λ by the formulas 
(25) (26) 

0.01 50 51 1.708 4.08 2.80 0.037 0.027 
0.05 100 101 2.004 4.60 2.70 0.030 0.023 

0.001 500 501 2.700 5.60 2.57 0.020 0.017 
0.0005 1000 1001 3.000 6.05 2.52 0.017 0.015 
0.0001 5000 5001 3.700 7.00 2.45 0.012 0.012 

Table 2: Similar calculations are made for pipes with a diameter. 
 
In this case, the value of λ according to our formula (26) is 
obtained significantly less than by formula (25) and only 
for very small Δ (in this case, at Δ = 0.0001 m), the value 
of λ by formulas (25) and (26 a) match with each other. 
 
For greater clarity, the data in Tables 1 and 2 are 
graphically depicted in Figure 3 and 4 below. 
 

From these figures it is clearly seen that by the formula 
(26) the value of λ always turns out to be less than by the 
formula (25) and only for very small values of Δ do they 
approach each other. However, these approximations are 
random in nature, since for smooth pipes, i.e. when Δ = 0 
by the formula (25) λ = 0, which cannot be, and our 
formula (26) is simplified and takes the form: 

λ = 0.14 (a-2) 2    (28) 
 

      
Figure 3                                                           Figure 4 

Figure 3: Graph of the function λ = ƒ (α) for smooth pipes.  
Figure 4: Curves of λ = ƒ (ℓℊ 𝑟𝑜 − 𝛥 𝛥; ℓℊ 𝑟𝑜 𝛥) according to formulas (36a) - 1 and (39a) - 2 for pipes with a diameter 
of d = 100mm. 
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The work of Schlichting G [12] / 13 / presents graphs 
comparing the results of calculations for smooth pipes 
according to the power law of velocity distribution with 
experimental data, where the values of α were selected 
taking into account the best fit of the calculated and 
experimental values of speeds to each other.  
 
It turned out that a smaller value of the Reynolds number 
Re corresponds to a smaller value of α. So, for Re = 4 ∙ 103, 
the value α = 6; Re = 2.3 ∙ 104, α = 6.6; Re = 1.1 ∙ 105, α = 
7.0; Re = 1.1 ∙ 106, α = 8.8; and when Re = 2 ∙ 106 and Re = 
3.2 106, α = 10. 
 
Determine the value of the Darcy coefficient λ for smooth 
pipes with reduced values of α, obtained from 
experiments. To do this, first determine the value of a. 
according to expression (8) with α = 6, we have: a = (1 + 1 
6) (2 + 1 6) = 3.11 18 thus determined values of a and α 
by formula (28) are given in Table 3. 
 

α 6.0 6.6 7.0 8.8 10.0 
а 3.11 2.48 2.45 2.35 2.32 
λ 0.172 0.0323 0.0284 0.0172 0.0135 

Table 3: Graphically depicted. 
 
As can be seen from this figure, the value of λ has the 
greatest value at λ = 6, and then drops sharply and has 
real values for smooth pipes with α ≥ 7, since in smooth 
pipes the drag coefficient λ cannot also have large values 
that occur when λ> 7.0. 
 
Thus, our equation (23) or (26) is of a general nature as 
compared with formula (25) and differs from it in its 
higher accuracy and reliability of the results produced. 
 
Returning to the Table 1 and 2 we will depict their results 
graphically in Figure 4 and 5. 
 
From these figures it can be seen that the values of λ 
according to our formula (26) are always less than those 
obtained from formula (25) and only for very small values 
of Δ do they approach each other. This situation suggests 
that, ceteris paribus, with the same diameter of the pipe, 
its throughput according to our formula is obtained 
significantly more than using formula (25) or the same 
water flow in our case can be skipped through the pipe 
with a small diameter than the formula (25). 
 
We will show what was said on the example of 
calculation. 
 
An example of calculation, when calculating pipelines, the 
value of the coefficient of resistance λ is determined first. 
We considered this question above; the results of the 

calculations are given in Table. 1 and 2, respectively, for 
pipes with d = 100 19 mm and d = 1000 mm. 
Next, we will consider the solution of the problem of the 
pipe carrying capacity with d = 100 mm with the value of 
the height of the roughness projections Δ = 1.0 mm. 
 
It is known that the water velocity in the pipe is 
determined from the expression V = √ 8𝑔 𝜆 𝑖𝑅 (29) 
Where 𝑅 is the hydraulic radius, m 
 
If we denote the value of the resistance coefficient 
obtained from the logarithmic formula (25) λ, and 
according to our formula (26) λ2, then with the same 
slope of the pipeline we can respectively write 
 

V1 = √ 8𝑔 𝜆1 𝑖𝑅1    (30) 
 
 

 

Figure 5: Curves of λ = ƒ (ℓℊ 𝑟𝑜 − 𝛥 𝛥; ℓℊ 𝑟𝑜 𝛥) 
according to formulas (36a)-1 and (39a)-2 for pipes 
with a diameter of d = 100mm. 

 
V2 = √ 8𝑔 𝜆2 𝑖𝑅2   (31) 

 
Then dividing (31) by (30) we will have: 
 

V2 V1 = √ 𝜆1 𝜆2 ∙ 𝑅2 𝑅1   (32) 
 

From this expression you can get: 
 

V2 = V1 𝜆1 𝜆2 𝑅2 𝑅1   (33) 
 
Suppose that with the help of the pipeline water is 
supplied by the sprinkler, the flow rate of which must be 
determined. 
 
The diameter of the pipeline d1 = 100 mm (outer 
diameter) dн = 108 mm with a wall thickness t = 4.0 mm), 
the height of the roughness projections Δ1 = 1.0 mm. 
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For these data, the value of 𝜆1, according to the formula 
(25) is 𝜆1 = 0.038, and according to the formula (26) 𝜆2 = 
0.027 (Table 1). 
 
Accept the value of the slope 𝑖 = 0.01. 
 
Then by the formula (30) the water velocity in the 
pipeline will be 
 

V1 = √8𝑔 𝜆1 𝑖 d 4   (34) 
 
Substituting the corresponding values of the parameters, 
we get: V1 = √ 8 ∙ 9.81 0.038 ∙ 0.1 4 0.01 = 2.27 m/s 
Taking into account the value 𝜆2 = 0.027 according to our 
formula (26) from (33) with 𝑅1 = 𝑅2 we will have: V2 = 
2.27 √0.038 0.027 = 2.69 m/s 
 
Now we determine the carrying capacity of the pipeline 
when calculating according to the logarithmic law of 
velocity distribution (V1 = 2.27 m/s) and 21 of the power 
law we obtained (V2 = 2.69 m/s). 
 
Accordingly, we will have: Q1 = WV1 = 𝜋r 2 ∙ V1 = 3.14 
0.052 ∙ 2.27 = 0.00786 m 3 / s Q2 = WV2 = r 2 V2 = 3.14 
0.052 ∙ 2.69 = 0 , 00931 m 3/s 
 
Thus, the capacity of the pipeline according to the 
logarithmic law is Q1 = 7.86 l/s and according to the 
power law we propose, Q2 = 9.31 l/s.  
 
And this means that in our case the pipeline capacity is 
obtained by 18% more than by a logarithmic formula. 
If we take for pipeline capacity Q1 = 7.86 l/s, obtained on 
the basis of calculations by logarithmic dependencies, 
then the same flow rate at the flow rate in the pipeline 
with d = 100 mm is equal to V2 = 2.69 m/s, obtained by 
our a power formula with some minor error can be 
passed through a pipeline with a diameter of d2 = 2√𝑄 
𝜋𝑉2 = 2√0.00786 3.14 2.69 = 0.061 m. This pipe diameter 
with outer diameter dн = corresponds to this internal 
diameter of the pipe according to GOST 10704-76 70 mm 
and wall thickness t = 4.0 mm.  
 
This thickness t = 4.0 mm is assumed to be the same with 
the pipe wall thickness d = 100 mm (dн = 108 mm), 
adopted above, for ease of comparison. If we now 
compare the weight of one running meter of pipe with dн 
= 108 mm and d2 = 70 mm, then we can establish the 
economic effect of using our formula (26) in the 
calculations. 
 
 According to GOST 10704-76 1 pm pipe with dn = 108 
mm weighs 10.26 kg, and from dn = 70 mm-6.51 kg. Then 
the saving of metal per 1 pm of pipe in the calculations 

using our formula (26) as compared to formula (25) is 
10.26 - 6.51 = 3.65 kg. 22 
 
Thus, if in the country for one year during the 
construction of closed irrigation networks, other 
communications, 500 km of pipes with d = 70 mm are 
used instead of pipes with d = 108 mm, then the total 
amount of saved metal will be 500,000. 3.65 = 1,825,000 
kg or 1825 tons. Currently there are no stable prices for 
materials, they often change mainly in a big way. 
However, if we take the cost of 1 ton of metal at current 
prices (roughly) 20,000 manat, then the overall economic 
efficiency from using pipes with dн = 70 mm pipes instead 
of d = 100 mm according to our recommendations will be 
E = 1825 ∙ 20000 = 36500000 manat, or 36.5 million 
manat. These savings are in materials and their cost. 
However, it is possible to calculate the savings in another 
embodiment, namely, by supplying water through a pipe 
with d = 108 mm in an amount of 9.31 l / s, using our 
calculation method together with 7.86 l/s using 
logarithmic formulas, you can increase the area irrigated 
crops and obtain additional agricultural products, provide 
a larger number of settlements, industrial enterprises 
with drinking and industrial water and calculate in this 
connection the economic effect, which will be very 
significant. 
 
 It is possible to carry out calculations for other pipe 
diameters and for each diameter to determine the 
economic efficiency of applying our calculation method. 
Thus, the application of our proposed method of 
calculation to determine throughput, pipelines of a closed 
irrigation network, shows their high reliability and, 
therefore, greater economic efficiency of agricultural 
production and other industries. 
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