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Abstract

Cardiovascular disease (CVD) is one of the leading causes of death globally, particularly among diabetic patients who are at an 
elevated risk of developing heart-related complications, including high blood pressure, atherosclerosis, and stroke. This study 
focuses on the application of deep learning algorithms to predict heart attacks by utilizing clinical biomarkers and medical 
images. The integration of stacked convolutional neural networks (CNN) and recurrent neural networks (RNN), optimized using 
the Emperor Penguin Optimizer (EPO), allows for the efficient handling of both structured and unstructured data. The results 
demonstrate the potential for early diagnosis and preventive care, offering new insights into personalized medical interventions.
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Abbreviations

CVD: Cardiovascular Disease; CNN: Convolutional Neural 
Networks; RNN: Recurrent Neural Networks; EPO: Emperor 
Penguin Optimizer; ML: Machine Learning; DL: Deep Learning; 
DNN: Deep Neural Networks; HRV: Heart Rate Variability; 
DBN: Deep Belief Network; ECG: Electrocardiograms.

Introduction

Diabetes is a significant risk factor for cardiovascular 
disease, contributing to conditions such as high blood 
pressure, arterial stiffness, and stroke, which ultimately 
increase the likelihood of a heart attack. Predicting heart 
attacks in diabetic patients is critical for reducing mortality, 
but the task is complex due to the multifactorial nature of the 
disease. While traditional models rely on specific biomarkers 
like blood pressure or cholesterol, modern advancements in 

deep learning allow for the integration of diverse data types, 
including medical images. This paper seeks to create a robust 
model by using deep learning to analyse datasets comprising 
both clinical readings and medical imaging data to accurately 
predict heart attacks in diabetic patients.

In recent years, machine learning (ML) and deep learning (DL) 
models have significantly advanced heart disease prediction, 
enhancing cardiovascular healthcare through early detection 
and personalized patient care [1]. This study aims to improve 
heart disease prediction in diabetic patients using integrated 
ML and DL models, with a particular focus on improving 
outcomes through timely and accurate diagnostics. Several 
models have been developed for cardiovascular disease 
(CVD) prediction [2] in diabetic populations. One notable 
approach, combining deep neural networks (DNNs) with 
heart rate variability (HRV) features, achieved remarkable 
success, particularly in diabetic males. The DNHRV model 
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reported a 98.8% accuracy, outperforming earlier models 
across various metrics, including precision and F1-score.

Another impactful approach involves an AI-based prognostic 
model designed to predict heart failure risk in diabetic 
patients. The proposed deep neural network survival method, 
PHNN, surpassed the traditional Cox proportional hazard 
model (COX) [3] in both discrimination and calibration. This 
AI model effectively identified 20 key predictors, aligning 
with recognized trends in clinical practice, further enhancing 
its reliability in heart failure prediction.

Deep learning models, especially those utilizing convolutional 
neural networks (CNNs), have also made significant strides 
in heart disease prediction, achieving over 90% accuracy 
[4]. These CNN-based models have outperformed both 
classical techniques and other DL methods, underscoring 
their efficacy in early-stage heart disease diagnosis. Holistic 
machine learning approaches that integrate lifestyle, clinical, 
genetic, and biochemical data have further improved 
heart disease prediction, achieving a cross-validated 
accuracy of 92% [5]. These models represent a significant 
improvement over traditional methods, particularly in 
their comprehensive approach to prediction. Deep learning 
has also been applied effectively to diabetes prediction. 
Models utilizing the PIMA and MESSIDOR datasets have 
achieved high accuracy rates, providing better categorization 
outcomes for diabetes diagnosis. Cloud-based frameworks, 
which combine traditional ML methods with deep learning 
[6], have demonstrated an accuracy of 98% when tested on 
the Pima Indian diabetic dataset from UCI, underscoring 
the potential of cloud-integrated solutions for large-scale 
diabetes prediction.

Moreover, integrated deep learning models that leverage 
features from lung, diabetic, and clinical datasets have been 
proposed to predict heart disease more effectively [7]. These 
models not only improve overall performance but also reduce 
false-positive rates, further enhancing the accuracy and 
reliability of heart disease diagnostics in diabetic patients. 
Deep learning models have consistently demonstrated 
superior performance in predicting outcomes from diabetes 
datasets. A deep belief network (DBN) model, for example, 
outperformed both LSTM and RNN models, achieving an 
impressive 95.79% accuracy [8] while maintaining the 
lowest mean absolute error. This showcases the strength of 
deep learning models in tackling complex prediction tasks in 
diabetic populations. In the realm of healthcare, particularly 
for diabetic patients, the intersection of artificial intelligence 
and cardiovascular disease prediction has gained substantial 
attention. Numerous studies have explored the use of deep 
learning (DL) and machine learning (ML) techniques to 
enhance the accuracy and reliability of disease prediction 

models, particularly for identifying risks related to heart 
blocks in diabetic patients [9].

One significant area of exploration has been the application 
of stacked deep learning models, particularly convolutional 
neural networks (CNNs) and recurrent neural networks 
(RNNs). These models are well-suited to handle the 
complexities of medical data, which often include time-
series elements (such as heart rate and glucose levels) 
and imaging data (such as echocardiograms). For instance, 
the use of CNN-RNN hybrids [10] has shown promise in 
accurately predicting not only cardiovascular conditions but 
also patterns indicative of disease progression in diabetes. 
By stacking these networks, researchers have been able to 
exploit the strengths of both models-CNNs for spatial feature 
extraction and RNNs for temporal sequence analysis.

Another critical area of research has been the development of 
predictive models that integrate both clinical and biometric 
data [11]. By leveraging data from electrocardiograms (ECG), 
glucose monitoring, and patient history, advanced machine 
learning models have improved diagnostic precision for 
conditions like myocardial infarction and atrial fibrillation. 
Integrating such data has become crucial in predicting heart 
blocks, as it allows for a more comprehensive assessment 
of the patient’s risk profile. Recent literature highlights 
the effectiveness of advanced optimization techniques in 
boosting the performance of predictive models. Techniques 
like genetic algorithms, particle swarm optimization, and 
gradient boosting have been applied to enhance model 
training and feature selection [12]. These techniques help 
improve model accuracy while reducing the risk of over 
fitting, a common challenge when dealing with complex 
medical data.

Additionally, cloud-based and edge computing frameworks 
have been explored to enable real-time heart block prediction 
in diabetic patients [13]. The combination of DL models with 
IoT-enabled healthcare devices has allowed for continuous 
monitoring and faster predictions. This advancement is 
particularly important for managing diabetes-related 
cardiovascular risks, where timely intervention can prevent 
severe outcomes. In terms of real-world applications, 
models integrating CNN and RNN architectures have been 
validated using datasets like the Physio Net Challenge 
dataset, which includes comprehensive ECG and glucose 
monitoring data. Studies have demonstrated that integrating 
these architectures can predict adverse cardiac events more 
accurately than conventional methods, proving beneficial 
in clinical decision-making for diabetic patients [13-15]. 
Lastly, explainable AI (XAI) models have started to play a 
crucial role in this domain. Providing interpretable results 
is essential for gaining trust from clinicians and ensuring 
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the models’ applicability in practice. Efforts have been made 
to create models that not only predict heart blocks but also 
offer insights into which features-such as glucose variability 
or specific ECG markers-contribute most to the prediction. 
This transparency is vital for integrating AI solutions into 
mainstream healthcare practices for diabetic patients [16].

Despite advancements in machine learning and deep 
learning models, accurately predicting heart blocks in 
diabetic patients remains a significant challenge due to the 
complexity of integrating temporal and spatial medical data, 
such as ECG readings and clinical histories. Existing models 
often fail to capture the intricate patterns between diabetes 
and cardiovascular diseases, resulting in suboptimal 
prediction performance. The objective of this paper is to 
develop an advanced deep learning approach by integrating 
stacked CNN and RNN models, aimed at improving the 
prediction of heart blocks in diabetic patients. This model 
seeks to enhance accuracy by leveraging both spatial features 
(from medical imaging and signals) and temporal data 
(from time-series health monitoring), ultimately providing 
a more reliable diagnostic tool for early intervention and 
personalized treatment strategies.

Survey of Research Challenges and Solutions

Several challenges arise when using deep learning to predict 
heart attacks. The first is data heterogeneity, as the dataset 
includes both structured data (such as blood pressure and 
cholesterol levels) and unstructured data (such as medical 
images). The solution lies in using CNNs to process image 
data and RNNs to analyse sequential data like blood pressure 
readings. Another challenge is over fitting, particularly 
with high-dimensional datasets, which can lead to poor 
generalization. Techniques like data augmentation, dropout 
layers, and early stopping are used to reduce over fitting. 
Lastly, computational complexity is a concern when training 
deep learning models on large datasets. Efficient optimization 
algorithms, such as the Emperor Penguin Optimizer (EPO), 
are utilized to minimize computational load while improving 
model accuracy.

The prediction of heart attacks in diabetic patients requires 
a sophisticated approach that integrates both structured 
clinical data and unstructured medical images. The proposed 
methodology leverages the strengths of deep learning 
models, specifically convolutional neural networks (CNN) 
for image processing and recurrent neural networks (RNN) 
for sequential data, while optimizing model performance 
using the Emperor Penguin Optimizer (EPO). The process 
begins with data collection, where the dataset consists of 
structured data, including clinical biomarkers such as blood 
pressure, cholesterol, and atherosclerosis markers, along 
with unstructured data from medical images like angiograms 

and echocardiograms.

Proposed Methodology

The prediction of heart attacks in diabetic patients requires 
a sophisticated approach that integrates both structured 
clinical data and unstructured medical images. The 
proposed methodology leverages the strengths of deep 
learning models, specifically stacked convolutional neural 
networks (CNN) for image processing and recurrent neural 
networks (RNN) for sequential data, while optimizing model 
performance using the Emperor Penguin Optimizer (EPO). 
The process begins with data collection, where the dataset 
consists of structured data, including clinical biomarkers 
such as blood pressure, cholesterol, and atherosclerosis 
markers, along with unstructured data from medical images 
like angiograms and echocardiograms.

The proposed methodology aims to develop an efficient deep 
learning framework for predicting heart attacks in diabetic 
patients by combining clinical data (biomarkers) and medical 
images. This approach employs stacked convolutional neural 
networks (Stacked CNN) for image processing, recurrent 
neural networks (RNN) for handling sequential clinical data, 
and the Emperor Penguin Optimizer (EPO) for optimizing 
the model. Below is an elaboration of each step involved in 
the methodology.

Data Collection
The dataset includes two primary types of data:
Structured Data (clinical biomarkers): This data comprises 
medical indicators such as blood pressure readings, 
cholesterol levels, glucose levels, and atherosclerosis markers 
(arterial stiffness, plaque buildup). These biomarkers are 
stored in .CSV format.
Unstructured Data (medical images): Medical images 
like angiograms, echocardiograms, and other relevant heart 
scans are used to capture visual information about arterial 
blockages, heart structure, and blood flow anomalies. These 
images are key to detecting patterns that lead to heart 
attacks.

Data Preprocessing
Structured Data Preprocessing: The clinical biomarkers 
are preprocessed by applying normalization and feature 
scaling to ensure that the features are comparable and in a 
consistent range. Handling missing values is done through 
imputation, while outliers are identified and adjusted to 
avoid data distortion. Temporal features, such as blood 
pressure trends over time, are created by calculating rolling 
averages or statistical metrics to enhance the prediction 
model’s ability to capture time-based trends.
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For the medical images, preprocessing involves resizing 
them to a consistent resolution, converting to grayscale (if 
necessary), and augmenting the dataset with transformations 
like rotation, flipping, and contrast enhancement. These 
augmentations are designed to make the stacked CNN model 
more robust and generalizable by introducing variability in 
the training data. The architecture consists of a dual pipeline 
combining stacked CNN for processing image data and RNN 
for handling sequential clinical data:

Stacked CNN for Image Processing
The stacked CNN model consists of multiple convolutional 
layers stacked on top of each other, enabling deeper feature 
extraction from the medical images. Each convolutional 
layer is followed by an activation function (ReLU) and max-
pooling to reduce dimensionality and highlight critical 
features. The stacked architecture allows for learning more 

complex hierarchical patterns in the images, facilitating the 
identification of heart attack risk factors.

RNN for Sequential Data
The RNN is used to process the structured, time-sequenced 
clinical data, such as blood pressure trends, cholesterol 
levels, and glucose readings over time. The RNN captures 
temporal dependencies and patterns in the data, allowing 
the model to understand how a patient’s health indicators 
change over time.

Feature Fusion: The outputs from both the stacked CNN 
and RNN models are concatenated and passed through fully 
connected layers to form a comprehensive feature set that 
reflects both visual and clinical indicators of heart health. 
Fig.1 shows the proposed workflow of the research work.

Figure 1: Workflow of the proposed work.

Optimization
The Emperor Penguin Optimizer (EPO) is employed to 
optimize the hyperparameters of the model. EPO simulates 
the collective behavior of emperor penguins in search of 
food, balancing exploration and exploitation during the 
optimization process. These results in better tuning of 
parameters such as learning rate, dropout rate, and the 
number of neurons, which ultimately enhances the accuracy 
and convergence of the deep learning model. The model is 
evaluated using key metrics such as accuracy, precision, 
recall, F1-score, and Area under the Curve - Receiver 
Operating Characteristics (AUC-ROC) to assess its ability 
to distinguish between high-risk and low-risk patients. A 

cross-validation strategy is applied to ensure the model’s 
robustness and generalizability.

Conclusion

In this study, we proposed a robust deep learning framework 
for predicting heart attacks in diabetic patients by integrating 
structured clinical data and unstructured medical images. 
By employing stacked convolutional neural networks 
(Stacked CNN) for image processing and recurrent neural 
networks (RNN) for analysing temporal trends in clinical 
biomarkers, the model effectively captures both spatial and 
sequential patterns associated with cardiovascular risk. 
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The incorporation of the Emperor Penguin Optimizer (EPO) 
further enhances model performance through efficient hyper 
parameter tuning.
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