Current Trends in Pharmacology and Clinical Trials ISSN: 2642-0848

Research Article Volume 2; Issue 1

The Potential of the Biofield Energy Treated Novel Proprietary Test Formulation on Organs Specific Biomarkers

Arul I¹, Trivedi MK¹, Branton A¹, Trivedi D¹, Nayak G¹, Mondal SC² and Jana S^{2*}

¹Trivedi Global Inc., Henderson, USA

²Trivedi Science Research Laboratory Pvt. Ltd, India

*Corresponding author: Dr. Snehasis Jana, Trivedi Science Research Laboratory Pvt. Ltd, Thane (W), India, Email: publication@trivedisrl.com

Received Date: June 17, 2019; Published Date: June 21, 2019

Abstract

The study was investigated to find out the impact of the Biofield Energy Treated test formulation on the function of vital organs viz. bones, heart, liver, lungs, and brain in various cell-based assays. The test formulation and the cell media was divided into two parts; one untreated (UT) and other part received the Biofield Energy Treatment remotely by a renowned Biofield Energy Healer, Inthirani Arul, Canada and was labeled as the Biofield Energy Treated (BT) test formulation/media. Cell viability data suggested that the test formulation was safe and non-toxic in nature in six different cells. The Biofield Energy Treated medium (BT-Med) + untreated test item (UT-TI) group showed 97.9% and 88.9% restoration of cell viability at 10 and 25 μ g/mL, respectively as compared to the UT-Med + UT-TI group in human cardiac fibroblasts cells (HCF). Moreover, BT-Med + BT-TI group showed 62.8% and 86.2% restoration of cell viability at 1 and 63 μ g/mL, respectively in human hepatoma cells (HepG2) compared to untreated. Furthermore, 125.6% (at 0.1 μ g/mL) and 94.8% (at 63 μ g/mL) restoration of cell viability was observed in adenocarcinomic human alveolar basal epithelial cells (A549) by UT-Med + BT-TI and BT-Med + UT-TI groups, respectively compared to the untreated.

The alkaline phosphatase (ALP) level was significantly increased by 81.8%, 83.9%, and 83.2% in the UT-Med + BT-TI, BT-Med + UT-TI, and BT-Med + BT-TI groups, respectively at 50 μ g/mL in human bone osteosarcoma cells (MG-63) compared to the untreated. Additionally, the level of ALP was significantly increased by 1430% (at 0.1 μ g/mL), 332.6% (at 1 μ g/mL), and 265% (at 0.1 μ g/mL) in the UT-Med + BT-TI, BT-Med + UT-TI, and BT-Med + BT-TI groups, respectively in human endometrial adenocarcinoma cells (Ishikawa) compared to the untreated. The percent protection of HCF (heart) cells (decreased of LDH activity) was significantly increased by 69% (at 1 μ g/mL), 100.9% (at 0.1 μ g/mL), and 76.9% (at 25 μ g/mL) in the UT-Med + BT-TI, BT-Med + UT-TI, and BT-Med + BT-TI groups, respectively compared to the untreated in HCF cells. The percent protection of HepG2 (liver) cells (decreased of ALT activity) was significantly increased by 44.4% (at 0.1 μ g/mL), 63.9% (at 10 μ g/mL), and 84.9% (at 1 μ g/mL) in the UT-Med + BT-TI, BT-Med + UT-TI, and BT-Med + BT-TI groups, respectively compared to untreated in HepG2 cells. The percent protection of A549 (lungs) cells (increased of SOD activity) was significantly increased by 35.1% and 78.3% in the UT-Med + BT-TI and BT-Med + BT-TI groups, respectively at 1 μ g/mL compared to untreated in A549 cells.

Serotonin level was significantly increased by 71.6%, 82.8%, and 104.8% in the BT-Med + BT-TI group at 1, 10, and 25 μ g/mL, respectively as compared to untreated in human neuroblastoma cells (SH-SY5Y). The relative quantification (RQ) of vitamin D receptor (VDR) was significantly increased by 253.5% (at 1 μ g/mL) and 270.3% (at 50 μ g/mL) in the BT-

Med + BT-TI group; while 235.2% at 10 μ g/mL in the BT-Med + UT-TI group as compared to the untreated in MG-63 cells. Overall, these results suggest that Biofield Treated test formulation significantly improved the relevant bones, heart, liver, lungs, and brain-related biomarkers. Altogether data suggest that the Biofield Energy Treatment (The Trivedi Effect®) can be useful to protect and maintain the normal function of each vital organ such as lungs, liver, heart, brain, and bones. Therefore, The Trivedi Effect® can be used as a complementary and alternative therapy against several disorders such as coronary artery disease, heart attack, heart failure, arrhythmias, congenital heart disease, cirrhosis, cardiomyopathy, liver cancer, Wilson disease, hemochromatosis, pneumonia, asthma, chronic bronchitis, emphysema, osteoporosis, cystic fibrosis, etc.

Keywords: Biofield Energy Treatment; The Trivedi effect®; Bone health; Cardiac health; Liver health; Lungs health; VDR receptor; Brain health

Abbreviations: VDRs: Vitamin D receptors; WHO: World Health Organization; ROS: Reactive Oxygen Species; RNS: Reactive Nitrogen Species; COPD: Chronic Obstructive Pulmonary Disease; CAM: Complementary and Alternative Medicine; NCCIH: The National Center of Complementary and Integrative Health; HCF: Human Cardiac Fibroblasts Cells; COPD: Chronic Obstructive Pulmonary Disease.

Introduction

Bones, heart, liver, lungs, and brain disorders are the major concern of human overall health across the globe. Vitamin D receptors (VDRs) are widely present in most of the vital organs like the brain, heart, lungs, kidney, liver, etc. and vitamin D acts as a key regulator for proper functioning of these organs through VDRs [1]. VDR is the transcription factor, which regulates the expression of various genes that mediate its physiological activities through cell-to-cell communication, normal cell growth, cell differentiation, cell cycling and proliferation, hormonal balance, neurotransmission, skin health, immune and cardiovascular functions. The major skeletal manifestations of vitamin D deficiency or mutation in the VDRs are rickets and osteomalacia [2]. The World Health Organization (WHO) estimates, in 2016, ~17.5 million people die due to cardiovascular (heart) disorders, ~3.5 million people die due to lungs disorders, ~1.3 million people die due to liver disorders around the globe each year [3]. Moreover, ~1.2 million people most frequently diagnosed adult-onset brain disorders in each year in the USA. [4]. Three main criteria to keep a healthy heart include the opening blood vessels, strengthening the heart muscle, and controlling free radical damage by antioxidants [5]. The release of liver mitochondrial enzymes is considered strong evidence for hepatic (liver) necrosis, which is associated with an increased production of reactive oxygen species (ROS) that leads to hepatic lipid peroxidation [6-8]. Oxidative stress in the respiratory system increases the production of mediators

of pulmonary inflammation and initiate or promote mechanisms of carcinogenesis [9]. The lung is one of the major organs, which is highly exposed by various oxidants i.e. endogenous and exogenous oxidants (cigarette smoke, mineral dust, ozone, and radiation). These oxidants produce free radicals, while reactive oxygen species (ROS) and reactive nitrogen species (RNS) are produced by phagocytes as well as by alveolar, polymorphonuclear, bronchial and different endothelial cells [10]. However, the role of oxidative stress in the pathogenesis of lung diseases has been widely reported such as asthma, chronic obstructive pulmonary disease (COPD), lung malignancies and parenchymal lung diseases like idiopathic pulmonary fibrosis and lung granulomatous diseases [11]. Serotonin (5-hydroxytryptamine, 5-HT) is among the brain's neuromodulators responsible for behavior and understanding [12]. Apart from medicines, non-pharmacologic methods that can increase serotonin by increasing recognition and happiness and well-being. These factors can protect against mental and physical disorders [13].

Various study data suggested the effect of Energy Therapy in cancer patients through therapeutic touch [14], massage therapy [15], etc. Complementary and Alternative Medicine (CAM) therapies are preferred model of treatment, among which Biofield Therapy (or Healing Modalities) is one approach to enhance emotional, mental, physical, and human wellness. The National Center of Complementary and Integrative Health (NCCIH) has recognized and allowed Biofield Energy Healing as a CAM approach in addition to other therapies and medicines such as natural products, chiropractic/osteopathic manipulation, Qi Gong, deep breathing, Tai Chi, yoga, meditation, massage, special diets, healing touch, relaxation techniques, traditional Chinese herbs and medicines, naturopathy, movement therapy, homeopathy, progressive relaxation, guided imagery, pilates, acupuncture, acupressure, Reiki, rolfing structural integration, hypnotherapy, Ayurvedic medicine,

mindfulness, essential oils, aromatherapy, and cranial sacral therapy. The Human Biofield Energy has subtle energy that has the capacity to work in an effective manner [16]. CAM therapies have been practiced worldwide with reported clinical benefits in different health disease profiles [17]. This energy can be harnessed and transmitted by the practitioners into living and non-living things *via* the process of Biofield Energy Healing.

The Biofield Energy Treatment, the Trivedi Effect®, has been reported to have a significant impact in the field of cancer research [18,19], materials science [20-22], microbiology [23-25], agriculture [26,27], nutraceuticals [28,29], and biotechnology [30,31]. Further, the Trivedi Effect® also significantly improved bioavailability of various low bioavailable compounds [32-34], an improved overall skin health [35,36], bone health [37-39], human health and wellness. Based on the excellent outcomes of the Biofield Energy Therapy in wide spectrum of areas, the authors intend to see the impact of the Biofield Energy Healing Treated test formulation on the function of vital organs such as bones, heart, liver, lungs, and brain specific biomarkers in different cell-lines.

Materials and Methods

Chemicals and reagents

Ferrous sulfate, vitamin B_6 , vitamin D_3 , vitamin B_{12} , calcium chloride, naringenin, trimetazidine (TMZ), 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT), and ethylenediaminetetraacetic acid (EDTA) were obtained from Sigma Chemical Co. (St. Louis, MO). Zinc chloride, magnesium gluconate, β -carotene, and calcitriol were purchased from TCI chemicals, Japan. Panax ginseng extract obtained from panacea Phytoextracts, India. Sodium selenate and ascorbic acid were obtained from Alfa Aesar, India. Silymarin and curcumin were obtained from Sanat Chemicals, India and quercetin obtained from Clearsynth, India. Reverse Transcription Kit, RNeasy Mini Kit, and Syber Green PCR kits were procured from Quagen, India. All the other chemicals used in this experiment were analytical grade procured from India.

Biofield energy healing strategy

The test formulation was the combination of eleven ingredients viz. calcium chloride, panax ginseng extract, vitamin B_{12} , β -carotene, vitamin D_3 , zinc chloride, magnesium gluconate, sodium selenate, ferrous sulfate,

ascorbic acid, and vitamin B₆. The test formulation and the cell media was divided into two parts; one untreated (UT) and other part received the Biofield Energy Treatment remotely by a renowned Biofield Energy Healer, Inthirani Arul, under laboratory conditions for ~3 minutes through healer's unique Biofield Energy Transmission process and was labeled as the Biofield Energy Treated (BT) test formulation/media. Further, the untreated group was treated with a "sham" healer, who did not have any knowledge about the Biofield Energy Healing Treatment for comparison purposes. The Biofield Energy Healer was located in the Canada, however the test items were located in the research laboratory of Dabur Research Foundation, New Delhi, India. Biofield Energy Healer in this experiment did not visit the laboratory, nor had any contact with the test samples. After that, the Biofield Energy Treated and untreated test items were kept in similar sealed conditions and used for the study as per the study plan.

Assessment of cell viability using MTT assay

Cells were counted using hemocytometer and plated in 96-well plates at the specific density described in Table 1. The cells were then incubated overnight under growth conditions to allow cell recovery and exponential growth. Following overnight incubation, cells were treated with different concentrations of test formulations (BT/UT). Following respective treatments, cells were incubated in a CO2 incubator at 37°C, 5% CO2, and 95% humidity and incubated for time period mentioned in Table 1. After incubation, the plates were taken out and 20 μL of 5 mg/mL of MTT 3-(4,5-dimethylthiazol-2-vl)-2,5-diphenyl tetrazolium bromide solution was added to all the wells followed by additional incubation for 3 hours at 37°C. The supernatant was aspirated and 150 µL of DMSO was added to each well to dissolve formazan crystals. The absorbance of each well was read at 540 nm using Synergy HT microplate reader. The percentage cytotoxicity at each tested concentration of TI was calculated using Equation 1:

% Cytotoxicity =
$$[(R-X)/R] *100....(1)$$

Where, X = Absorbance of treated cells; R = Absorbance of untreated cells

The concentrations exhibiting percentage cytotoxicity < 30% were considered as non-cytotoxic [40].

S. No.	Cell Line	Plating	Time Point
1	MG-63 (Bone)	3x10 ⁴ cells/ well, 96-well plate	5 days
2	Ishikawa (Uterus)	3x10 ⁴ cells/ well, 96-well plate	5 days
3	A549 (Lung)	10x10 ⁴ cells/ well, 96-well plate	24 hours
4	HepG2 (Liver)	1x10 ⁴ cells/ well, 96-well plate	24 hours
5	Human Cardiac fibroblasts (Heart)	1x10 ⁴ cells/ well, 96-well plate	24 hours
6	SH-SY5Y (Neuronal cell)	10x10 ⁴ cells/ well, 96-well plate	24 hours

Table 1: Information related to six cell lines with their plating density and time-point.

Evaluation of the cytoprotective effect of the formulation

Cells (human cardiac fibroblasts-HCF; human hepatoma cells-HepG2; and adenocarcinomic human alveolar basal epithelial cells-A549) were counted and plated in suitable medium followed by overnight incubation. The cells were then treated with the test items/positive control at the non-cytotoxic concentrations for 24 hours. After 24 hours, oxidative stress was given to the cells using 10 mM t-BHP for 3.5 hours. The untreated cells served as a control that did not receive any treatment and was maintained in cell growth medium only. Cells treated with 10 mM of t-BHP alone served as negative control. After 3.5 hours of incubation with t-BHP the above plates were taken out and cell viability was determined by MTT assay. The percentage protection corresponding to each treatment was calculated using Equation 2:

% Protection = [(Absorbance_{sample}-Absorbance_{t-BHP})]*100/ [Absorbance_{untreated}-Absorbance_{t-BHP}]......(2)

Assessment of alkaline phosphatase (ALP) activity

The cells (human bone osteosarcoma cells-MG-63 and human endometrial adenocarcinoma cells-Ishikawa) were counted using a hemocytometer and plated in 24-well plates at the density corresponding to 1 X 104 cells/well in phenol-free DMEM supplemented with 10% CD-FBS. Following the respective treatments, the cells in the above plate were incubated for 48 hours in CO₂ incubator at 37°C, 5% CO₂, and 95% humidity. After 48 hours of incubation, the plates were taken out and processed for the measurement of ALP enzyme activity. The cells were washed with 1 X PBS and lysed by freeze-thaw method i.e., incubation at -80°C for 20 minutes followed by incubation at 37°C for 10 minutes. To the lysed cells, 50 μL of substrate solution *i.e.*, 5 mM of *p*-nitrophenyl phosphate (pNPP) in 1M diethanolamine and 0.24 mM magnesium chloride (MgCl₂) solution (pH 10.4) was added to all the wells followed by incubation for 1 hour at 37°C. The absorbance of the above solution was read at 405 nm using Synergy HT microplate reader (Biotek, USA). The absorbance values obtained were normalized with substrate blank (pNPP solution alone) absorbance

values. The percentage increase in ALP enzyme activity with respect to the untreated cells (baseline group) was calculated using Equation 3:

% Increase in ALP = $\{(X-R)/R\}*100----(3)$

Where, X = Absorbance of cells corresponding to positive control and test groups

R = Absorbance of cells corresponding to baseline group (untreated cells)

Estimation of lactate dehydrogenase (LDH) in human cardiac fibroblasts (HCF)

The human cardiac fibroblasts (HCF) Cells were counted and plated at the density of 0.25 X 10⁶ cells/ well in 24-well plates in cardiac fibroblast specific medium followed by overnight incubation. The cells were then treated with the test formulation/positive control at the non-cytotoxic concentrations for 24 hours. After 24 hours, oxidative stress was given to the cells using 10 mM *t*-BHP for 3.5 hours. The untreated cells were served as control that did not receive any treatment and were maintained in cell growth medium only. Cells treated with 10 mM of *t*-BHP alone served as the negative control. After 3.5 hours of incubation with *t*-BHP the above plates were taken out and LDH activity was determined using LDH activity kit as per manufacturer's instructions. The percent increase in LDH activity was calculated using Equation 4.

% Increase = [(LDH activity_{sample}-LDH activity_{t-BHP})]*100/ [LDH activity_{untreated}-LDH activity_{t-BHP}]......(4)

Estimation of ALT in liver cells (HepG2)

The human hepatoma cells (HepG2) were counted and plated at the density of 5 X 10^4 cells/well in 48-well plates in DMEM media followed by overnight incubation. The cells were then treated with the test formulation/positive control at the non-cytotoxic concentrations for 24 hours. After 24 hours, oxidative stress was given to the cells using 400 μ M t-BHP for 3.5 hours. The untreated cells served as control that did not receive any treatment and were maintained in cell growth medium only. Cells treated with 400 μ M of t-BHP alone served as negative control. After 3.5 hours of incubation with t-BHP the

above plates were taken out and ALT activity was determined using ALT activity kit as per manufacturer's instructions. The percent increase in ALT activity was calculated using Equation 5.

% Increase = [(ALT activity_{sample}-ALT activity_{t-BHP})]*100/ [ALT activity_{untreated}-ALT activity_{t BHP}]................(5)

Estimation of superoxide dismutase (SOD) in lung (A549) cells

The adenocarcinomic human alveolar basal epithelial cells (A549) were counted and plated at the density of 1 X 10^4 cells/well in 24-well plates in DMEM followed by overnight incubation. The cells were then treated with the test formulation/ positive control at the non-cytotoxic concentrations along with $100~\mu\text{M}$ t-BHP to induce oxidative stress. The untreated cells served as control that did not receive any treatment and were maintained in cell growth medium only. Cells treated with $100~\mu\text{M}$ of t-BHP alone served as negative control. After 24 hours of incubation with t-BHP the above plates were taken out and SOD activity was determined using SOD activity kit as per manufacturer's instructions. The percent increase in SOD activity was calculated using Equation 6:

% Increase in SOD activity = ((X-R)/R)*100....(6)Where, X = SOD activity corresponding to Test Item or Positive Control

R = SOD activity corresponding to Control group.

Estimation of serotonin in neuronal cells (SH-SY5Y)

The human neuroblastoma (SH-SY5Y) cells were counted and plated at the density of 10 X 10⁴ cells/well in 96-well plates followed by overnight incubation. The cells were then treated with the test items/positive control at the non-cytotoxic concentrations. The untreated cells served as control that did not receive any treatment and were maintained in cell growth medium only. The treated cells were incubated for 24 hours. Serotonin release was determined by ELISA as per manufacturer's protocol. The percent increase in serotonin levels was calculated using Equation 7

[(X-R)/R]*100.....(7)

Where, X = Serotonin levels corresponding to test item or positive control

R = Serotonin levels corresponding to control group.

Effect of test formulation on vitamin D receptor (VDR) in bone (MG-63) cells

The human bone osteosarcoma (MG-63) cells were counted using the hemocytometer were plated at a density of 2 X 10^5 cells/well in 6-well plates followed by overnight incubation. The cells were then sera starved for

24 hours and treated with the test formulation/positive control at the non-cytotoxic concentrations. The untreated cells that served as control that did not receive any treatment and were maintained in cell growth medium only. The treated cells were incubated for 24 hours and VDR expression was determined by Q-PCR using VDR specific primers. Cells were harvested by scrapping and washed with PBS. Cell pellets obtained were analyzed for VDR gene expression using human VDR Forward: primers: GCTGACCTGGTCAGTTACAGCA-3'. 5'-Reverse: CACGTCACTGACGCGGTACTT-3'. VDR gene expression was normalized using House-keeping (HK) reference. Relative quantification (RQ) of VDR gene in Biofield Energy Treated cells was calculated with respect to the untreated cells using Equation 8:

RQ = 2-N....(8).

Where N is the relative Threshold Cycle (CT) value of treated sample with respect to the untreated sample.

Statistical analysis

All the values were represented as Mean \pm SD (standard deviation) of three independent experiments. The statistical analysis was performed using SigmaPlot statistical software (v11.0). For two groups comparison student's t-test was used. For multiple group comparison, one-way analysis of variance (ANOVA) was used followed by post-hoc analysis by Dunnett's test. Statistically significant values were set at the level of $p \le 0.05$.

Results and Discussion

Cell viability using MTT assay

Determination of non-cytotoxic concentration of the formulation and positive controls by MTT cell viability assay was used in terms of percent viable cells in six (6) different cell-lines *viz.* MG-63, Ishikawa, A549, HepG2, HCF, and SH-SY5Y. Based on the percent cell viability data, it was observed that the formulation and positive controls were safe and non-toxic at the tested concentrations in six different cell lines and selected for other parameters analysis.

Evaluation of cytoprotective effect of the test formulation

For the evaluation of the vital organs *viz.* heart, liver, and lungs of the formulation was examined in *in vitro* cell-based assay under the stimulation of *tert*-butyl hydroperoxide (*t*-BHP) induced oxidative stress. *t*-BHP has been routinely used for the induction of oxidative stress in various cells [40,41]. The cytoprotective activity of the Biofield Energy Treated test formulation on the

restoration of cell viability was determined against t-BHP induced cell damage and the result is shown in Figure 1. Trimetazidine (TMZ) was used as positive control in human cardiac fibroblasts cells (HCF) and showed, restoration of cell viability by 40.57%, 60.68%, and 90.04% at 5, 10, and 25 µg/mL, respectively compared to the *t*-BHP induced group. Besides, the test formulation showed 73.5% restoration of cell viability at 0.1 μg/mL in the UT-Med + BT-TI group as compared to the UT-Med + UT-TI group. Moreover, at 1 µg/mL the UT-Med + BT-TI and BT-Med + BT-TI group showed 48.3% and 81.7% restoration of cell viability, respectively than UT-Med + UT-TI group. Additionally, the test formulation showed 18.3%, 97.9%, and 79.4% restoration of cell viability at 10 µg/mL in the UT-Med + BT-TI, BT-Med + UT-TI, BT-Med + BT-TI groups, respectively as compared to the UT-Med + UT-TI group. At 25 µg/mL the test formulation showed 70.6%, 88.9%, and 76.3% restoration of cell viability, respectively in the UT-Med + BT-TI, BT-Med + UT-TI, and BT-Med + BT-TI groups, respectively than UT-Med + UT-TI group (Figure 1).

Silymarin was used as positive control in human hepatoma cells (HepG2) resulted, restoration of cell viability by 31.63%, 64.63%, and 74.64% at 5, 10 and 25 μ g/mL, respectively compared to the *t*-BHP induced group. Besides, the test formulation showed 24.4% restoration of cell viability at 0.1 μ g/mL in the UT-Med + BT-TI group as compared to the UT-Med + UT-TI group. Moreover, at 1 μ g/mL the BT-Med + UT-TI and BT-Med + BT-TI groups showed 40.1% and 62.8% restoration of cell viability, respectively than UT-Med + UT-TI group. Further, the test formulation showed 59%, 22.5%, and 86.2% restoration of cell viability at 63 μ g/mL in the UT-Med + BT-TI groups, respectively as compared to the UT-Med + BT-TI group, (Figure 1). Quercetin was used as positive control

in adenocarcinomic human alveolar basal epithelial cells (A549) resulted, restoration of cell viability by 30.80%, 69.33%, and 72.22% at 5, 10 and 25 µg/mL, respectively compared to the t-BHP induced group. Besides, the test formulation showed 125.6% and 51.5% restoration of cell viability at 0.1 µg/mL in the UT-Med + BT-TI and BT-Med + BT-TI groups, respectively compared to the UT-Med + UT-TI group. Moreover, at 1 µg/mL the UT-Med + BT-TI and BT-Med + BT-TI groups showed 41.4% and 34.5% restoration of cell viability, respectively than UT-Med + UT-TI group.

Additionally, the test formulation showed 17.2% and 37.1% restoration of cell viability at 10 μ g/mL in the UT-Med + BT-TI and BT-Med + UT-TI groups, respectively compared to the UT-Med + UT-TI group. Further, the test formulation showed 47.8% restoration of cell viability at 25 µg/mL in the BT-Med + UT-TI group compared to the UT-Med + UT-TI group. Besides, at 63 µg/mL the test formulation exhibited 20% and 94.8% restoration of cell viability in the UT-Med + BT-TI and BT-Med + UT-TI groups, respectively as compared to the UT-Med + UT-TI group (Figure 1). The cellular antioxidant capacity can reduce due to excess production of free radicles that leads to inflammation [42]. This excess level of free radicles can affect the normal functions of cell membrane, and ultimately altered the genetic materials and cause various age-related disorders such as autoimmune diseases, cardiovascular, diabetes, and cancer [43-45]. The study results suggest that Biofield Treatment has significantly protects t-BHP induced cardiotoxicity, hepatotoxicity, and lung cell toxicity which could be due to The Trivedi Effect®-Biofield Energy Healing. Therefore, Biofield Energy Healing Treatment could be used for the management of cardiovascular, liver, and various lung disorders.

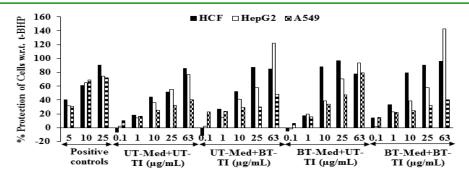


Figure 1: Assessment of cytoprotective effect of the test formulation in human cardiac fibroblasts cells (HCF), human hepatoma cells (HepG2), and adenocarcinomic human alveolar basal epithelial cells (A549) against tert-butyl hydroperoxide (t-BHP) induced damage. TMZ: Trimetazidine (μ M), silymarin (μ g/mL), and quercetin (μ M) were used as positive control in HCF, HepG2, and A549 cells, respectively. UT: Untreated; Med: Medium; BT: Biofield Treated; TI: Test item.

Assessment of Alkaline Phosphatase (ALP) Activity

The effect of the test formulation on bone-specific alkaline phosphatase level is shown in Figure 2. The positive control, calcitriol showed 13.19%, 21.41%, and 35.37% increased the level of ALP at 0.1, 1, and 10 nM, respectively in MG-63 cells. Moreover, the experimental groups showed 79.1%, 77.9%, and 83.5% increased the level of ALP in the UT-Med + BT-TI, BT-Med + UT-TI, and BT-Med + BT-TI groups, respectively with respect to the UT-Med + UT-TI group at 10 μg/mL. At 50 μg/mL, the percent ALP was significantly increased by 81.8%, 83.9%, and 83.2% in the UT-Med + BT-TI, BT-Med + UT-TI, and BT-Med + BT-TI groups, respectively compared to the UT-Med + UT-TI group (Figure 2). Besides, the positive control naringenin showed 9.45%, 23.68%, and 130.24% increased the level of ALP at 0.1, 1, and 10 nM, respectively in Ishikawa cells. ALP percent was significantly increased by 1430% and 265% in the BT-Med + UT-TI and BT-Med + BT-TI groups, respectively compared to the UT-Med + UT-TI group at 0.1 µg/mL. Moreover, the experimental groups showed 57.9%, 332.6%, and 103.2% increased the level of ALP in the UT-Med + BT-TI, BT-Med + UT-TI, and BT-Med + BT-TI groups, respectively with respect to the UT-Med + UT-TI group at 1 µg/mL. At 10 µg/mL, the percent ALP was significantly increased by 120.6% and 143.5% in the BT-Med + UT-TI and BT-Med + BT-TI groups, respectively compared to the UT-Med + UT-TI group. Further, the percent ALP was significantly increased by 28.4%, 77.3%, and 115.8% in the UT-Med + BT-TI, BT-Med + UT-TI and BT-Med + BT-TI groups, respectively at 50 µg/mL compared to the UT-Med + UT-TI group (Figure 2). The ALP activity is essential for the bone mineralization and considered a useful biochemical marker for bone formation [46]. Thus, for the detection of bone specific biochemical marker in serum can be clinically useful in evaluating the progress of the bone healing process [47,48]. In this experiment, the level of ALP was revealed that the Biofield Energy Healing Treated test formulation significantly increased the level of ALP expression, which might be very helpful to the patients suffering from various bone-related disorders.

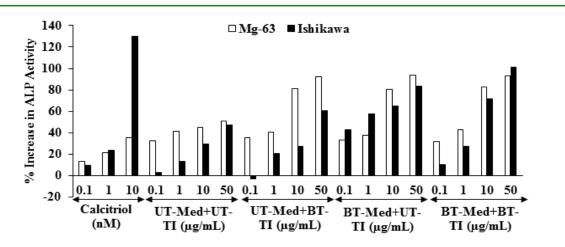


Figure 2: The effect of the test formulation on alkaline phosphatase (ALP) in human bone osteosarcoma cells (MG-63) and human endometrial adenocarcinoma cells (Ishikawa). Calcitriol and naringenin were used as positive control in Mg-63 and Ishikawa cells, respectively. UT: Untreated; Med: Medium; BT: Biofield Treated; TI: Test item.

Estimation of lactate dehydrogenase (LDH) activity in human cardiac fibroblasts (HCF)

The lactate dehydrogenase (LDH) enzyme is mainly present in the heart and skeletal muscle, and responsible for anaerobic respiration of cells [49]. LDH is rapidly released into the cell culture supernatant when the plasma membrane is damaged and is a key feature of cells undergoing apoptosis, necrosis, and other forms of cellular damage [50]. The effect of test items on the

percent protection of HCF cells in terms of decreased level of lactate dehydrogenase (LDH) activity is shown in Figure 3. The positive control, trimetazidine (TMZ) exhibited 3.59%, 30.14%, and 69.42% protection of HCF cells (decreased of LDH activity) compared to the t-BHP group. The percent protection of HCF cells (decreased of LDH activity) was significantly increased by 47.3%, 100.9%, and 44.1% in the UT-Med + BT-TI, BT-Med + UT-TI, and BT-Med + BT-TI groups, respectively at 0.1 µg/mL as compared to the UT-Med + UT-TI group. Moreover, at 1

µg/mL, the percent protection of HCF cells (decreased of LDH activity) was significantly increased by 69% and 39% in the UT-Med + BT-TI and BT-Med + UT-TI groups, respectively as compared to the UT-Med + UT-TI group.

Further, percent protection of HCF cells (decreased of LDH activity) was also significantly increased by 55.5%, 55.2%, and 46.8% in the UT-Med + BT-TI, BT-Med + UT-TI, and BT-Med + BT-TI groups, respectively at 10 μ g/mL as compared to the UT-Med + UT-TI group. Further, percent protection of HCF cells (decreased of LDH activity) was also significantly increased by 32.5%, 21.3%, and 76.9% in the UT-Med + BT-TI, BT-Med + UT-TI, and BT-Med + BT-TI groups, respectively at 25 μ g/mL as

compared to the UT-Med + UT-TI group (Figure 3). LDH is a pathologic biomarker for a wide variety of cardiovascular disorders (CVDs) such as myocardial ischemia, strenuous, etc. Various heavy metals exposure can increase the level of LDH and simultaneously more prone to CVDs [51]. The study results found that there was a significant reduction of LDH level after Biofield Energy Treatment and protect heart cells, which might be helpful to resist against various pathological conditions like tissue injury, necrosis, hemolysis or malignancies, hypoxia, etc. It also indicating that the heart cells acted normally under stress and anaerobic condition and improved overall heart function.

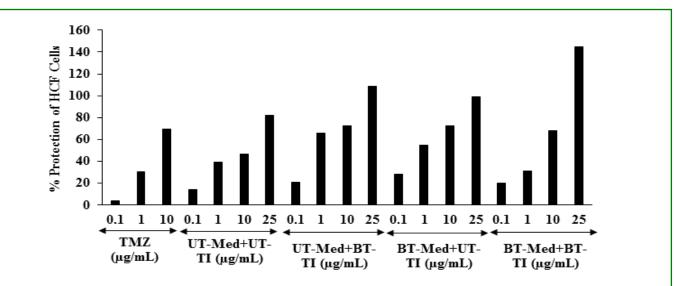


Figure 3: The effect of the test formulation on the percent protection of HCF cells in terms of decreased lactate dehydrogenase (LDH) activity against *tert*-butyl hydroperoxide (*t*-BHP) induced damage. TMZ: Trimetazidine; UT: Untreated; Med: Medium; BT: Biofield Treated; TI: Test item.

Estimation of alanine amino transferase (ALT) activity in HepG2 cells

The effect of the test formulation on protection of HepG2 cells in terms of decrease alanine amino transferase (ALT) activity is shown in Figure 4. The positive control, silymarin exhibited 6.52%, 51.59%, and 74.51% protection of HepG2 cells (decreased of ALT activity). The protection of HepG2 cells (decreased of ALT activity) was significantly increased by 44.4% at 0.1 μ g/mL in the UT-Med + BT-TI group as compared to the UT-Med + UT-TI group. Moreover, at 1 μ g/mL, percent protection of HepG2 cells (decreased of ALT activity) was increased by 23.2%, 15.6%, and 84.9% in the UT-Med + BT-TI, BT-Med + UT-TI and BT-Med + BT-TI groups, respectively as compared to the UT-Med + UT-TI group. Further, protection of HepG2

cells (decreased of ALT activity) was also significantly increased by 63.9% and 17.3% in the BT-Med + UT-TI and BT-Med + BT-TI groups, respectively at 10 μ g/mL as compared to the UT-Med + UT-TI group (Figure 4). The aminotransferase enzymes that catalyze the reversible transformation of α -ketoacids into amino acids. Increased level of ALT is directly proportional to the severity of the hepatic disorders [52]. Emerging data also suggest that ALT has play as a predictor of mortality independent of liver disease [53,54]. Here, the Biofield Energy Treatment significantly protect liver hepatocytes in terms of reducing the level of transaminases enzyme, ALT compared to the *t*-BHP inducing group, which might be due to Consciousness Energy Healing Treatment to the test formulation.

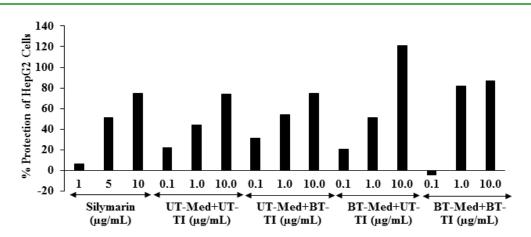


Figure 4: Effect of the test formulation on the percent protection of human liver cancer (HepG2) cells in terms of decreased alanine amino transaminase (ALT) activity under the stimulation of *tert*-butyl hydroperoxide (*t*-BHP). UT: Untreated; Med: Medium; BT: Biofield Treated; TI: Test item.

Estimation of superoxide dismutase (SOD) activity in adenocarcinomic human alveolar basal epithelial cells (A549)

The effect of the test formulation on the protection of lungs cells (A549) in terms of increased super oxide dismutase (SOD) activity is shown in Figure 5. The positive control, showed 62.09%, 80.28%, and 93.87% protection of A549 (lungs) cells (increased of SOD activity) compared to the t-BHP group. The percent protection of A549 (lungs) cells (increased of SOD activity) was significantly increased by 35.1% and 78.3% at 1 µg/mL in the UT-Med + BT-TI and BT-Med + BT-TI groups, respectively compared to the UT-Med + UT-TI group (Figure 5). The lungs are directly exposed to more oxygen concentrations in comparison to other tissues.

Increased oxidative stress leads to the pathogenesis of various obstructive lung disorders such as asthma, chronic obstructive pulmonary disease (COPD), lung malignancies, etc. SOD enzyme is considered as an important antioxidant defense mechanism in all living cells which are exposed to oxygen especially in lungs. SOD can convert the superoxide radicals to hydrogen peroxide [55,56]. Altogether, data observed that a significant increased SOD level after Biofield Energy Treatment in A549 cells, which might be helpful to resist against various pathological conditions like oxidative stress and related adverse effect. It also indicating that the lung cells acted normally and improved overall respiratory activities.

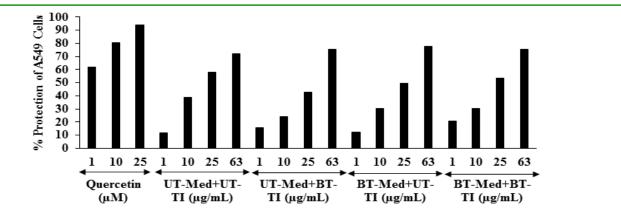


Figure 5: Effect of the test formulation on the percent protection of lungs cells (A549) in terms of increased SOD activity under the stimulation of *tert*-butyl hydroperoxide (*t*-BHP). UT: Untreated; Med: Medium; BT: Biofield Treated; TI: Test item.

Effect of test formulation on serotonin in human neuroblastoma (SH-SY5Y) cells

The effect of test formulation on serotonin level was assessed in SH-SY5Y cells after 24 hours of treatment by ELISA and the results are shown in Figure 6. The positive control, showed 66.33%, 115.13%, and 143.41% increased the level of serotonin. The level of serotonin was significantly increased by 33% and 71.6% in the UT-Med + BT-TI and BT-Med + BT-TI groups, respectively at 1 μ g/mL compared to the UT-Med + UT-TI group. Moreover, at 10 μ g/mL, 5-HT level was significantly increased by 27.6%, 22.5%, and 82.8% in the UT-Med + BT-TI, BT-Med + UT-TI, and BT-Med + BT-TI groups, respectively as compared to the UT-Med + UT-TI group. The serotonin level was significantly increased by 19.4%, 40.2%, and 104.8% in the UT-Med + BT-TI, BT-Med + UT-TI, and BT-Med + BT-TI groups, respectively at 25 μ g/mL as

compared to the UT-Med + UT-TI group. Further, the serotonin level was significantly increased by 13.4%, 53.8%, and 79.9% in the UT-Med + BT-TI, BT-Med + UT-TI, and BT-Med + BT-TI groups, respectively at 63 µg/mL as compared to the UT-Med + UT-TI group (Figure 6). Serotonin (5-HT) is a neurotransmitter produced in neurons, gut, and heart cell mainly and responsible for stress, anxiety, aggressive behavior, and for the regulation of blood pressure [57]. Loss of 5-HT leads to various neuropsychiatric diseases like depression, Alzheimer's disease, loss of ability of thinking, memory loss, cognitive health, etc. [58]. Thus, the data suggested that Biofield Energy Healing Treated novel formulation significantly improved the serotonin level, which would be highly useful against various neurodegenerative diseases and other age-related disorders and improved the normal functioning of the brain tissues.

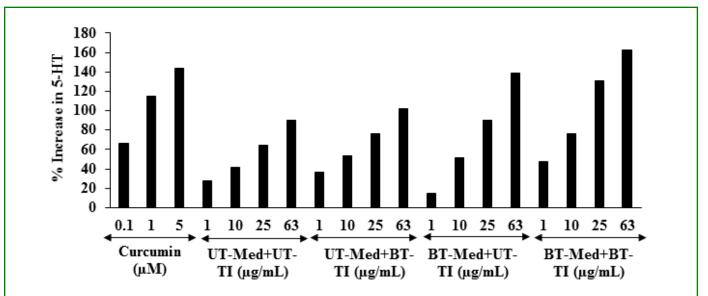


Figure 6: Effect of the test formulation on percent increase in 5-hydroxy tryptamine (5-HT) or serotonin in human neuroblastoma cells (SH-SY5Y). UT: Untreated; Med: Medium; BT: Biofield Treated; TI: Test item.

Effect of test formulation on vitamin D receptors (VDRs)

Human bone osteosarcoma cells (MG-63) were treated with the test formulation and the effect on VDR expression was determined using quantitative-polymerase chain reaction (Q-PCR) amplification. VDR-relative threshold cycle (VDR-CT) values were obtained from PCR amplification. Relative quantification (RQ) was calculated from the VDR-CT and house-keeping (HK)-CT values for MG-63 cells treated with test formulation and positive control is represented in Figure 7. The positive control (calcitriol) showed 61.33%, 107.05%, and

160.27% increase of RQ of VDR in a concentration-dependent manner at 1, 10, and 100 nM, respectively. Moreover, RQ of VDR was significantly increased by 112.4%, 209.7%, and 253.5% in the UT-Med + BT-TI, BT-Med + UT-TI, and BT-Med + BT-TI groups, respectively at 1 μ g/mL compared to the UT-Med + UT-TI group. Additionally, at 10 μ g/mL the VDR level was significantly increased by 139%, 235.2%, and 163.1% in the UT-Med + BT-TI, BT-Med + UT-TI, and BT-Med + BT-TI groups, respectively compared to the UT-Med + UT-TI group. Further, VDR level was also significantly increased by 204.3%, 209.9%, and 270.3% in the UT-Med + BT-TI, BT-Med + UT-TI, and BT-Med + BT-TI groups, respectively at

50 µg/mL compared to the UT-Med + UT-TI group. The biologically most active vitamin D compound is 1α , 25-dihydroxyvitamin D₃ (1, 25(OH)₂D₃), which functions as specific high-affinity ligand of the transcription factor of VDRs [59]. The active form of vitamin D [1α ,25(OH)(2)D(3)] can binds and activates its specific nuclear receptor, *i.e.*, the vitamin D receptor (VDR). Thus, this activated VDR can prevents the release of calcium

from its storage in bone to serum by stimulating intestinal calcium absorption and renal reabsorption [60,61]. Overall, the Biofield Energy Treated test formulation has tremendously increased the expression of VDRs, which might be helpful to bind more active vitamin D_3 metabolites and that ultimately can improve the more physiological functions of vitamin D and simultaneously improved bone cell growth and development.

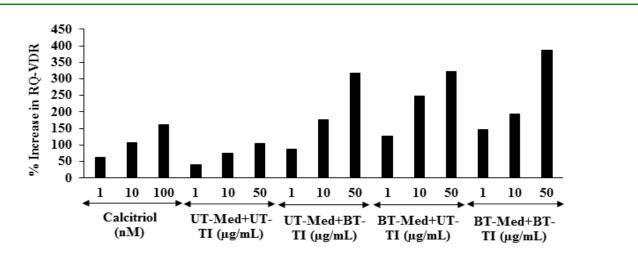


Figure 7: Effect of the test formulation on percent increase in relative quantification (RQ) of vitamin D receptors (VDRs) gene in human bone osteosarcoma cells (MG-63). UT: Untreated; Med: Medium; BT: Biofield Treated; TI: Test item.

Conclusion

The study findings showed that the tested novel test formulation was safe and non-toxic based on MTT cell viability assay in six tested cells. The treatment group like BT-Med + UT-TI showed 97.9% and 88.9% restoration of cell viability at 10 and 25 µg/mL, respectively in human cardiac fibroblasts cells (HCF) compared to the UT-Med + UT-TI group. Moreover, the BT-Med + BT-TI group showed 62.8% and 86.2% restoration of cell viability at 1 and 63 µg/mL, respectively in human hepatoma cells (HepG2) compared to the untreated group. Additionally, the UT-Med + BT-TI and BT-Med + UT-TI groups showed 125.6% (at 0.1 μ g/mL) and 94.8% (at 63 μ g/mL) restoration of viability, respectively cell adenocarcinomic human alveolar basal epithelial cells (A549) compared to the untreated group. Alkaline phosphatase (ALP) activity was significantly increased by 83.9% in the BT-Med + UT TI group at 50 $\mu g/mL$ in human bone osteosarcoma cells (MG-63). Moreover, ALP activity was significantly increased by 1430% (at 0.1 $\mu g/mL$), 332.6% (at 1 $\mu g/mL$), and 265% (at 0.1 $\mu g/mL$) in the UT-Med + BT-TI, BT-Med + UT-TI, and BT-Med + BT-TI groups, respectively than untreated group.

The percent protection of HCF cells (decreased of LDH activity) was significantly increased by 100.9% (at 0.1 μg/mL) in the BT-Med + UT-TI group compared to the untreated group in HCF cells. The percent protection of HepG2 cells (decreased of ALT activity) was significantly increased by 84.9% (at 1 µg/mL) in the BT-Med + BT-TI group compared to the untreated group in HepG2 cells. The percent protection of A549 (lungs) cells (increased of SOD activity) was significantly increased by 78.3% in the BT-Med + BT-TI group at 1 µg/mL compared to the untreated group in A549 cells. The serotonin level was significantly increased by 82.8% and 104.8% at 10 and 25 μg/mL, respectively in the BT-Med + UT-TI and BT-Med + BT-TI groups, respectively compared to the untreated group in human neuroblastoma cells (SH-SY5Y). The relative quantification (RQ) of vitamin D receptors (VDRs) level was significantly increased by 253.5% (at 1 µg/mL) and 270.3% (at 50 µg/mL) in the BT-Med + BT-TI group; while 235.2% at 10 μ g/mL in the BT-Med + UT-TI as compared to the untreated in MG-63 cells compared to the untreated group in MG-63 cells. In conclusion, The Biofield Energy Treatment significantly improved heart, liver, bones, neuronal, and lungs parameters and also

cardiomyocyte, hepatocyte, osteocytes, pneumocyte, and nerve cells from oxidative damage induced by tert-butyl hydroperoxide (t-BHP). Thus, results suggested that Biofield Energy Treatment can be used as a complementary and alternative treatment for the prevention of various types of cardiac disorders (peripheral artery disease, high blood pressure, congenital heart disease, stroke, congestive heart failure, rheumatic heart disease, carditis, valvular heart disease, thromboembolic disease, and venous thrombosis, etc.), hepatic disorders (cirrhosis, Wilson disease, liver cancer, hemochromatosis), and lungs disorders (Asthma, Emphysema, Chronic bronchitis, Pneumonia, Cystic fibrosis).

Further, it can be useful to improve cell-to-cell messaging, normal cell growth and differentiation, cell cycling and proliferation, neurotransmission, skin health, hormonal balance, immune and cardiovascular functions. Moreover, it can also be utilized in organ transplants (i.e., liver, kidney, and heart transplants), , aging, hormonal imbalance and various inflammatory and immune-related disease conditions like Alzheimer's Disease (AD), Dermatitis, Asthma, Ulcerative Colitis (UC), Hashimoto Thyroiditis, Pernicious Anemia, Sjogren Syndrome, Aplastic Anemia, Multiple Sclerosis, Hepatitis, Graves' Disease. Irritable Bowel Syndrome (IBS), Dermatomyositis, Diabetes, Myasthenia Gravis, Atherosclerosis, Parkinson's Disease, Systemic etc. to Lupus Erythematosus (SLE), stress, improve overall health and Quality of Life.

Acknowledgements

Authors gratefully acknowledged to Trivedi Global, Inc., Trivedi Science, and Trivedi Master Wellness for their support. In addition, authors are thankful for the support of Dabur Research Foundation for conducting this study.

References

- 1. Holick MF (1996) Vitamin D and bone health. J Nutr 126: 1159S-64S.
- 2. Bikle DD (2012) Vitamin D and bone. Curr Osteoporos Rep 10(2): 151-159.
- 3. 2017 Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2016 (GBD 2016) Results. Seattle, Institute for Health Metrics and Evaluation (IHME), United States.
- 4. Pal S (2018) Incidence and prevalence of major neurologic disorders. US Pharm 43(1): 24.

- 5. Rakesh S, Arunporn I (2017) Herbal supplements or herbs in heart disease: Herbiceutical formulation, clinical trials, futuristic developments. J Cardiol Cardiovasc Ther 3(1): 555603.
- Contreras-Zentella ML, Hernández-Muñoz R (2016) Is Liver Enzyme Release Really Associated with Cell Necrosis Induced by Oxidant Stress? Oxid Med Cell Longev 2016: 3529149.
- 7. Schmidt E, Schmidt FW (1970) Aspects of enzyme diagnosis. Med Welt 21: 805-816.
- 8. Frederiks WM, Vogels IM, Fronik GM (1984) Plasma ornithine carbamyl transferase level as an indicator of ischaemic injury of rat liver. Cell Biochem Funct 2: 217-220.
- 9. Boots AW, Haenen GR, Bast A (2003) Oxidant metabolism in chronic obstructive pulmonary disease. Eur Respir J 46: 14S-27S.
- 10. Romieu I (2005) Nutrition and lung health. Int J Tuberc Lung Dis 9: 362-374.
- 11. Kelly FJ (2005) Vitamins and respiratory disease: Antioxidant micronutrients in pulmonary health and disease. Proc Nutr Soc 64: 510-526.
- 12. Fischer AG, Ullsperger M (2017) An update on the role of serotonin and its interplay with dopamine for reward. Front Hum Neurosci 11: 484.
- 13. Anonymous (2006) A sensible 10-year plan for mental health. Lancet 367: 86.
- 14. Lutgendorf SK, Mullen-Houser E, Russell D, Degeest K, Jacobson G, et al. (2010) Preservation of immune function in cervical cancer patients during chemoradiation using a novel integrative approach. Brain Behav Immun 24(8): 1231-1240.
- 15. Ironson G, Field T, Scafidi F, Hashimoto M, Kumar M, et al. (1996) Massage therapy is associated with enhancement of the immune system's cytotoxic capacity. Int J Neurosci 84(1-4): 205-217.
- 16. Jain S, Hammerschlag R, Mills P, Cohen L, Krieger R, et al. (2015) Clinical studies of biofield therapies: Summary, methodological challenges, and recommendations. Glob Adv Health Med 4(Suppl): 58-66.
- 17. Rubik B (2002) The biofield hypothesis: Its biophysical basis and role in medicine. J Altern Complement Med 8(6): 703-717.

- 18. Trivedi MK, Patil S, Shettigar H, Mondal SC, Jana S (2015) The potential impact of biofield treatment on human brain tumor cells: A time-lapse video microscopy. J Integr Oncol 4(3): 141.
- Trivedi MK, Patil S, Shettigar H, Gangwar M, Jana S (2015) *In vitro* evaluation of biofield treatment on cancer biomarkers involved in endometrial and prostate cancer cell lines. J Cancer Sci Ther 7(7): 253-257.
- 20. Trivedi MK, Tallapragada RM (2008) A transcendental to changing metal powder characteristics. Met Powder Rep 63: 22-28,31.
- 21. Trivedi MK, Nayak G, Patil S, Tallapragada RM, Latiyal O (2015) Studies of the atomic and crystalline characteristics of ceramic oxide nano powders after bio field treatment. Ind Eng Manage 4(3): 161.
- 22. Trivedi MK, Nayak G, Patil S, Tallapragada RM, Latiyal O, et al. (2015) Effect of biofield energy treatment on physical and structural properties of calcium carbide and praseodymium oxide. International Journal of Materials Science and Applications 4: 390-395.
- 23. Trivedi MK, Branton A, Trivedi D, Nayak G, Charan S, et al. (2015) Phenotyping and 16S rDNA analysis after biofield treatment on *Citrobacter braakii*: A urinary pathogen. J Clin Med Genom 3(1): 129.
- 24. Trivedi MK, Patil S, Shettigar H, Mondal SC, Jana S (2015) Evaluation of biofield modality on viral load of Hepatitis B and C viruses. J Antivir Antiretrovir 7: 83-88.
- 25. Trivedi MK, Patil S, Shettigar H, Mondal SC, Jana S (2015) An impact of biofield treatment: Antimycobacterial susceptibility potential using BACTEC 460/MGIT-TB System. Mycobact Dis 5(4): 189
- 26. Trivedi MK, Branton A, Trivedi D, Nayak G, Mondal SC, et al. (2015) Morphological characterization, quality, yield and DNA fingerprinting of biofield energy treated alphonso mango (*Mangifera indica L.*). Journal of Food and Nutrition Sciences 3: 245-250.
- 27. Trivedi MK, Branton A, Trivedi D, Nayak G, Mondal SC, et al. (2015) Evaluation of biochemical marker Glutathione and DNA fingerprinting of biofield energy treated *Oryza sativa*. American Journal of BioScience 3: 243-248.
- 28. Trivedi MK, Branton A, Trivedi D, Nayak G, Plikerd WD, et al. (2017) A Systematic study of the biofield

- energy healing treatment on physicochemical, thermal, structural, and behavioral properties of magnesium gluconate. International Journal of Bioorganic Chemistry 2(3): 135-145.
- 29. Parulkar VR, Trivedi MK, Branton A, Trivedi D, Nayak G, et al. (2018) Improved metabolism of vitamin d3 in human osteoblasts cells after biofield energy healing treatment. American Journal of Laboratory Medicine 3: 11-19.
- 30. Trivedi MK, Patil S, Shettigar H, Bairwa K, Jana S (2015) Phenotypic and biotypic characterization of *Klebsiella oxytoca*: An impact of biofield treatment. J Microb Biochem Technol 7(4): 202-205.
- 31. Nayak G, Altekar N (2015) Effect of biofield treatment on plant growth and adaptation. J Environ Health Sci 1(2): 1-9.
- 32. Branton A, Jana S (2017) The influence of energy of consciousness healing treatment on low bioavailable resveratrol in male Sprague Dawley rats. International Journal of Clinical and Developmental Anatomy 3(3): 9-15.
- 33. Branton A, Jana S (2017) The use of novel and unique biofield energy healing treatment for the improvement of poorly bioavailable compound, berberine in male Sprague Dawley rats. American Journal of Clinical and Experimental Medicine 5(4): 138-144.
- 34. Branton A, Jana S (2017) Effect of The biofield energy healing treatment on the pharmacokinetics of 25-hydroxyvitamin D₃ [25(OH) D₃] in rats after a single oral dose of vitamin D₃. American Journal of Pharmacology and Phytotherapy 2(1): 11-18.
- 35. Parulkar VR, Trivedi MK, Branton A, Trivedi D, Nayak G, et al. (2017) The use of consciousness energy healing based herbomineral formulation for skin antiaging strategies. Journal of Food and Nutrition Sciences 5(3): 96-106.
- 36. Singh J, Trivedi MK, Branton A, Trivedi D, Nayak G, et al. (2017) Consciousness energy healing treatment based herbomineral formulation: A safe and effective approach for skin health. American Journal of Pharmacology and Phytotherapy 2(1): 1-10.
- 37. Anagnos D, Trivedi K, Branton A, Trivedi D, Nayak G, et al. (2018) Influence of biofield treated vitamin D_3 on proliferation, differentiation, and maturation of bone-related parameters in MG-63 cell-line.

- International Journal of Biomedical Engineering and Clinical Science 4(1): 6-14.
- 38. Lee AC, Trivedi K, Branton A, Trivedi D, Nayak G, et al. (2018) The potential benefits of biofield energy treated vitamin D₃ on bone mineralization in human bone osteosarcoma cells (MG-63). International Journal of Nutrition and Food Sciences 7(1): 30-38.
- 39. Stutheit ME, Trivedi K, Branton A, Trivedi D, Nayak G, et al. (2018) Biofield energy treated vitamin D₃: Therapeutic implication on bone health using osteoblasts cells. American Journal of Life Sciences 6(1): 13-21.
- 40. Alía M, Ramos S, Mateos R, Bravo L, Goya L (2005) Response of the antioxidant defense system to *tert*-butyl hydroperoxide and hydrogen peroxide in a human hepatoma cell line (HepG2). J Biochem Mol Toxicol 19(2): 119-128.
- 41. Vargas-Mendoza N, Madrigal-Santillán E, Morales-González A, Esquivel-Soto J, Esquivel-Chirino C, et al. (2014) Hepatoprotective effect of silymarin. World J Hepatol 6(3): 144-149.
- 42. Webb C, Twedt D (2008) Oxidative stress and liver disease. Vet Clin North Am Small Anim Pract 38(1): 125-135.
- 43. Sha Li, Hor-Yue Tan, Ning Wang, Zhang-Jin Zhang, Lixing Lao, et al. (2015) The role of oxidative stress and antioxidants in liver diseases. Int J Mol Sci 16(11): 26087-26124.
- 44. Cheresh P, Kim SJ, Tulasiram S, Kamp DW (2013) Oxidative stress and pulmonary fibrosis. Biochim Biophys Acta 1832(7): 1028-1040.
- 45. Lu LY, Ou N, Lu QB (2013) Antioxidant induces DNA damage, cell death and mutagenicity in human lung and skin normal cells. Sci Rep 3: 3169.
- 46. David Feldman, J. Wesley Pike and John S. Adams (2011) Vitamin D (3rd edn), Vitamin D, Volume I Chapter 23-Target Genes: Bone Proteins. pp. 411-424.
- 47. Emami A, Larsson A, Petrén-Mallmin M, Larsson S. (1999) Serum bone markers after intramedullary fixed tibial fractures. Clin Orthop Relat Res 368: 220-229.
- 48. Komnenou A, Karayannopoulou M, Polizopoulou ZS, Constantinidis TC, Dessiris A (2005) Correlation of serum alkaline phosphatase activity with the healing

- process of long bone fractures in dogs. Vet Clin Pathol 34(1): 35-38.
- 49. Burgner JW, Ray WJ (1984) On the origin of the lactate dehydrogenase induced rate effect. Biochemistry 23(16): 3636-3648.
- 50. Kumar P, Nagarajan A, Uchil PD (2008) Analysis of cell viability by the lactate dehydrogenase assay. Cold Spring Harb Protoc 2018(6): pdb.prot095497.
- 51. Liao YT, Chen CJ, Li WF, Hsu LI, Tsai LY, et al. (2012) Elevated lactate dehydrogenase activity and increased cardiovascular mortality in the arsenic-endemic areas of southwestern Taiwan. Toxicol Appl Pharmacol 262(3): 232-237.
- 52. Pratt DS, Kaplan MM (2000) Evaluation of abnormal liver-enzyme results in asymptomatic patients. N Engl J Med 342(17): 1266-1271.
- 53. Mathiesen U, Franzen L, Fryden A, Foberg U, Bodemar G (1999) The clinical significance of slightly to moderately increased liver transaminase values in asymptomatic patients. Scand J Gastroenterol 34(1): 85-91.
- 54. Price C, Alberti K (1979) Biochemical assessment of liver function. In: Wright R, et al., (Eds), Liver and biliary diseases pathophysiology, diagnosis, management. W. B. Saunders, London, 381-416.
- 55. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O (2012) Oxidative stress and antioxidant defense. World Allergy Organ J 5(1): 9-19.
- 56. Kinnula VL, Crapo JD (2003) Superoxide dismutases in the lung and human lung diseases. Am J Respir Crit Care Med 167(12): 1600-19.
- 57. Dorszewska J, Prendecki M, Oczkowska A, Rozycka A, Lianeri M, et al. (2013) Polymorphism of the COMT, MAO, DAT, NET and 5-HTT genes, and biogenic amines in Parkinson's disease. Current Genomics 14(8): 518-533.
- 58. Meltzer CC, Smith G, DeKosky ST, Pollock BG, Mathis CA, et al. (1998) Serotonin in aging, late-life depression, and Alzheimer's disease: the emerging role of functional imaging. Neuropsychopharmacology 18(6): 407-430.
- 59. Carlberg C, Molnár F (2012) Current status of vitamin D signaling and its therapeutic applications. Curr Top Med Chem 12(6): 528-547.

- 60. Yamamoto Y, Yoshizawa T, Fukuda T, Shirode-Fukuda Y, Yu T, et al. (2013) Vitamin D receptor in osteoblasts is a negative regulator of bone mass control. Endocrinology 154(3): 1008-1020.
- 61. Van Pottelbergh I, Goemaere S, De Bacquer D, De Paepe A, Kaufman M (2002) Vitamin D receptor gene allelic variants, bone density, and bone turnover in community-dwelling men. Bone 31(5): 631-637.