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Graphical Abstract

Abstract

Cisplatin, a platinum-based chemotherapy drug, has been a cornerstone in treating various cancers, particularly testicular and 
ovarian tumours, for nearly four decades. It works by damaging DNA and forming bonds between DNA and proteins, leading to 
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cancer cell death. However, its effectiveness is often limited by severe side effects, including nephrotoxicity, and the development 
of drug resistance due to cancer cells’ ability to repair DNA damage. Recent advancements have mapped cisplatin-induced DNA 
damage across the human genome, offering insights into cancer sensitivity and resistance mechanisms. One promising approach 
to enhancing cisplatin’s efficacy and reducing its side effects is combining it with curcumin, a polyphenolic compound from 
turmeric known for its anticancer properties and minimal side effects. Curcumin has shown potential in sensitizing cancer 
cells to cisplatin, although its low bioavailability remains a challenge. More high-quality research is needed to fully understand 
the effectiveness of this combination therapy and to optimize its use in clinical settings. This review explores the side effects of 
cisplatin, the benefits of curcumin, and the potential of their combination delivered via nanocarriers as a novel cancer treatment 
strategy.
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Abbreviations

FDA: Food And Drug Administration; NER: Nucleotide 
Excision Repair; HR: Homologous Recombination; NHEJ: 
Nonhomologous End Joining; ICLs: Interstrand Crosslinks; 
MOMP: Mitochondrial Outer Membrane Permeabilization; 
ROS: Reactive Oxygen Species; BUN: Blood Urea Nitrogen; 
GPX: Glutathione Peroxidase; OAT: Organic Anion 
Transporter; OCT: Organic Cation Transporter; ERCC1: 
Excision Repair Cross-Complementation Group 1.

Introduction 

Today, heart disease is the leading cause of death in developed 
countries and cancer is the second leading cause of death in 
developing countries. According to GLOBOCAN, there were 
12.7 million cancer cases and 7.6 million cancer deaths in 
2008; 64% of cancer deaths and 56% of cancer cases occurred 
in developing countries [1]. In addition, the incidence of 
cancer has been predicted to almost double between 2020 
and 2030 [1]. Scientists and medical professionals around 
the world are interested in the use of platinum and other 
metals in cancer treatment, including the development of 
cisplatin analogues. Cisplatin analogues with antitumor 
efficacy comparable to cisplatin but with a lower toxicity 
profile are carboplatin and oxaliplatin [2]. The platinum 
coordination complex is cis-diaminodichloroplatinum (II) 
(NSC 119875), also known as cisplatin, is a planar shape. 
Two amine groups and two chloride ions are attached 
to platinum. Cisplatin is called the “penicillin of cancer” 
because it is often used in clinics and because it was the first 
effective chemotherapy agent used in cancer treatment when 
it was approved by the FDA in 1978 as the platinols [3-5]. 
Cisplatin, also known as CDDP or platinol, is an antitumor 
drug that is the basis of many different cancer regimens and 
has improved survival and led to cures [6,7]. Cisplatin is a 
platinum-based alkylating agent that interacts with DNA to 

form interstrand bifunctional N-7 DNA adducts d(GpG) 
and d(ApG) and interstrand crosslinks [8-11]. Despite 
side effects, particularly nephrotoxicity and ototoxicity at 
low doses, cisplatin remains the first-line treatment for 
many types of solid tumors [12]. When used, CDDP-based 
therapy often works to achieve initial therapeutic success, 
characterized by a partial or stabilization tumour response. 
However, a large proportion of patients develop intrinsic 
drug resistance or cisplatin resistance during treatment, 
leading to treatment failure [13,14]. Cisplatin is given to 
10-20% of cancer patients because of its effectiveness in 
reducing cancer growth. Cisplatin is absorbed and excreted 
by the kidney via proximal tubule-specific transporters 
such as OCT2 and MATE1. As a result, cisplatin accumulates 
in renal proximal tubule cells, causing swelling, damage, 
and cell death [15]. However, persistent adverse effects of 
cisplatin, such as inhibition of transcription, cell cycle arrest, 
production of reactive oxygen species (ROS) and apoptosis, 
limit its therapeutic use [16]. Compared with a control group 
that received no treatment, the five-year absolute benefit 
of cisplatin chemotherapy was a 6.9% reduction in lung 
cancer-related deaths [17]. The precise antitumor effects of 
cisplatin are still poorly understood [18-21]. Gastrointestinal 
symptoms (such as nausea and vomiting), bone marrow 
suppression, ototoxicity, neurotoxicity (such as peripheral 
neuropathy), hepatotoxicity, genotoxicity, etc. some side 
effects are also seen at therapeutic levels [22]. Currently, 
there are no FDA-approved treatments to reduce or prevent 
permanent hearing loss caused by cisplatin [23]. Due to 
ineffective medication delivery to the tumors, many potent 
therapeutic medicines tested in vitro did not provide any 
effects in vivo. To get around this obstacle, researchers have 
had success employing protective substances like curcumin 
[24], berberine [25], resveratrol [26], and cinnamon [27], 
among others, to lessen side effects or boost the anticancer 
effectiveness of cisplatin. Additionally, platforms for drug 
delivery that incorporate micro- and nanocarriers can 
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improve the bioavailability of medications [28-30]. Typically, 
DNA is thought to be its main biological target [31]. About 
65% of cis-(Pt (NH3)2d(GpG)) (“cis-GG”) and about 25% 
of cis-(Pt (NH3)2d(ApG) (“cis-AG”) are produced when the 
platinum atom of cisplatin forms covalent connections to 
the N7 sites of purine bases. 1,2-intrastrand adducts and 
5–10% 1,3-intrastrand adducts (also known as “cis-GNG”) 
are present [32].

The Discovery of Platinum Compounds as 
Anticancer Agents
Until the mid-1960s, cancer chemotherapy was exclusively 
based on organic chemical substances. A significant shift 
occurred when it was unexpectedly discovered that platinum-
based inorganic compounds had anticancer properties. In 

1965, Barnett Rosenberg observed that a platinum complex 
produced during electrolysis with platinum electrodes 
inhibited binary fission in Escherichia coli. Further 
research showed that Pt²⁺ species, generated through 
photoreactions, were effective in preventing cell division. 
Among the compounds examined, the platinum complexes 
cis-(PtCl₂(NH₃)₂) with Pt²⁺ and cis-(PtCl₄(NH₃)₂) with Pt⁴⁺ 
were particularly effective in stopping cell division [3]. Since 
Rosenberg and colleagues accidentally discovered cisplatin’s 
antitumor properties in the 1960s, platinum (II) complexes 
have become a key component of cancer chemotherapy. 
These complexes primarily target DNA by binding to 
nitrogen atoms in nucleic acids, ultimately inhibiting tumour 
cell formation [34,35] (Figures 1 & 2).
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Figure 1: Examples of platinum complexes used in therapy.

Bristol-Myers (now Bristol-Myers Squibb), which conducted 
extensive research on anticancer medications, conducted 
additional studies later in 1979 to provide details 
regarding the safety and effectiveness of the Food and Drug 
Administration (FDA). The FDA granted cisplatin approval 

in 1978 for use in chemotherapy for cancer. It became 
acceptable for inorganic chemists to send their compounds 
to cancer institutes for testing for antitumor activity all of a 
sudden [36].

Pharmacokinetics of Platinum Drugs

Figure 2: Platinum prescription drug’s pharmacology.

Cancer patients receive intravenous (i.v.) injections of 
cisplatin. The injection solutions are newly made just before 
use due to the drug’s inadequate stability in aqueous media. 
Because of the blood’s relatively high (100 mM) chloride 

concentration, free cisplatin is present in this medium in 
its complete form. However, due to the decreased chloride 
content (4 mM) inside cells, the water is eventually replaced 
by the chloride ligands following cellular absorption, leading 
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to the production of positively charged aqua species. These 
cations subsequently move to the nucleus, where they 
interact with the DNA’s nucleobases [37-41]. 

Cytotoxicity of Cisplatin
Inter-strand lesions are significantly less common than 
inter-strand crosslinks. Because it creates DNA crosslinks 

that can severely hinder replicative DNA polymerases and 
trigger apoptosis, cisplatin selectively kills cancer cells that 
are dividing quickly [42]. In addition, cisplatin adducts 
hinder gene transcription and elongate RNA polymerases 
[43], which both contribute to cisplatin-induced cell death 
Figure 3.

Figure 3: Cytotoxicity of cisplatin. Cisplatin-induced DNA adduct (red) blocks replicative DNA polymerase (left) and RNA 
polymerase (right). Both replication and transcription stalling can trigger apoptosis.

Cisplatin Binds with DNA
For cisplatin to exhibit anticancer action, DNA is the primary 
target [44,45]. The mono- or dehydrated platin that has 
entered the nucleus is sufficiently susceptible to DNA base 
reactions. Fig. 4 lists the probable binding sites for each DNA 
nucleotide. (Figure 4. Schematic illustration of several DNA 
base binding locations when cisplatin moiety is present) 
(article 4). In vitro, studies have shown that the N7 position 
of guanine’s imidazole ring is more amenable to attack than 
adenine or any other bases found in DNA, such as cytosine 
and thymine [46-48]. Cells that respond with cisplatin 
on DNA must either repair the lesions or accept them in 
order to endure the effects of the treatment; otherwise, 
cisplatin-induced DNA damage, including apoptosis, would 
cause massive cell death. Once cisplatin has generated a 
range of DNA lesions, the majority of the major DNA repair 
systems get involved in mending the DNA damage that drug 
exposure has caused. Actually, nucleotide excision repair 
(NER), mismatch repair (MMR), homologous recombination 
(HR), and nonhomologous end joining (NHEJ) are used to 
repair DNA damage brought on by cisplatin [49]. During 
the aquation process, cisplatin is made highly reactive and 
quickly binds to a number of biomolecules inside the cell [50]. 
When cisplatin binds to DNA bases covalently in its reactive 
form, it produces DNA adducts. Cisplatin is very reactive with 
the nucleophilic N7-sites of purine bases, and a two-step 
reaction could covalently link purines. In contrast to purines 
on the same strand, which form interstrand adducts, purines 

on the opposite strand generate interstrand crosslinks (ICLs) 
[51] (Figure 1B).

Figure 4: Cisplatin-induced DNA adducts. The predominant 
DNA adducts caused by cisplatin include (A) bulky cisplatin 
adducts on singular purines, (B) inter-strand crosslinks 
between bases on the same strand, and (C) inter-strand 
cross-links between bases on opposing strands.

Resistance after Cisplatin-DNA Binding
NER [52] is the most effective technique for eradicating DNA 
lesions that result in cisplatin resistance. The NER system 
excises damaged nucleotides on both strands and then 
synthesizes DNA to restore the integrity of the gene [53] 
L.C. Gillet and O.D. Scharer published Molecular Mechanics 
of mammalian global genome nucleotide excision repair 
in Chem. Rev. 106 (2006) 253-276. NER overexpression 
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decreases cisplatin sensitivity in cells [54] MMR, a highly 
critical protein, is involved in the normal repair of DNA 
damage caused by cisplatin. If it is unable to repair itself, 
apoptosis occurs [55]. 

Cytochrome P450 Enzymes
Monooxygenases are a class of more than 50 enzyme 
isoforms collectively referred to as CYP450. Studies have 
shown that CYP450 enzymes are mostly found in the human 
liver’s endoplasmic reticulum membranes as well as in cells 
beyond the liver, including those in the lung, kidney, small 
intestine, brain, bone marrow, and blood cells [56-58]. 

An extensive range of endogenous or exogenous lipophilic 
substances are metabolized by CYP450 enzymes. Two main 
proteins make up CYP450 enzymes: an iron-containing 
haemoprotein and a flavoprotein part that transfers 
electrons from NADPH to the CYP450 substrate complex. 
The heme iron is situated near the drug-binding site on the 
CYP450 molecule. The iron atom is first in its ferric form 
(Fe+3), then with the transfer of one electron from NADP via 
NADPH reductase, it is subsequently reduced to its ferrous 
form (Fe+2). The heme iron is subsequently reduced to its 
ferrous state (Fe+2) by the transfer of one electron from 
NADP via NADPH reductase after being oxidized back to Fe+3. 
The subsequent oxidation of the heme iron to Fe+3 results in 
the simultaneous introduction of an oxygen atom into the 

substrate. H2O is then created by adding another oxygen 
molecule [59].

Molecular Mechanisms of Cisplatin
Cisplatin’s structure is simple, consisting only of one 
platinum, two chlorine ions, and two ammonia groups. 
Cisplatin produces intra- and/or inter-strand crosslinks and 
mono adducts when it reacts with the DNA’s purine bases. 
The aquated platinum molecule has the potential to interact 
with DNA early on and produce mono adducts. The majority 
of these mono adducts will then form DNA crosslinks, about 
90%. The majority of the crosslinks created by cisplatin 
are intra-strand, connecting adjacent guanines (65%) and 
adjacent guanines and adenines (approximately 25%) on 
the same DNA strand. It has also been shown that cisplatin 
can create a modest number of intra-strand crosslinks 
connecting any nucleoside; however, these crosslinks form 
gradually. Inter-strand crosslinks caused by cisplatin can 
form between two guanine residues on opposing strands 
at a very low rate (1%) [60]. Cisplatin interacts with DNA 
(including mitochondrial DNA), RNA, and proteins as a 
result of its positively charged nature because it prefers the 
nucleophilic N7 atoms of the imidazole rings of guanosine 
and adenosine [61]. DNA crosslinks created by cisplatin 
prevent RNA transcription and DNA replication Cisplatin’s 
modes of action as shown in Figure 6 [62].

Figure 5: Cisplatin’s modes of action.
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Intracellular cisplatin quickly equates and turns extremely 
reactive due to the comparatively low concentration of chloride 
ions (in comparison to the extracellular surroundings). 
Indeed, a wide variety of nucleophilic molecules, such as 
cysteine and methionine residues on proteins and DNA 
bases, can be bound by aqueous cisplatin. This causes the 
formation of inter- and intra-strand adducts in the nucleus, 
which are detected by the DNA damage-sensing. machinery. 
Cisplatin adducts activate a DNA damage response (DDR) 
[63], which frequently involves the ATR kinase, CHEK1 and 
CHEK2, and the tumour suppressor protein TP53 if the 
degree of damage is too great to be repaired. Then, TP53 
transactivates numerous genes that code for elements of the 
extrinsic apoptotic cascade as well as genes that promote 

mitochondrial outer membrane permeabilization (MOMP), 
which results in the onset of intrinsic apoptosis. The caspase 
cascade and numerous caspase-independent processes 
are activated by MOMP (alone or in conjunction with the 
contribution of death receptor-ignited BID-transduced 
signals), which ultimately seals the cell fate. MOMP and cell 
death are linked to cisplatin-induced DNA damage via a 
number of other signalling pathways (details are provided in 
the main text; not displayed). When cisplatin interacts with 
GSH, metallothionein’s, or mitochondrial proteins like VDAC 
in the cytoplasm, reducing equivalents are depleted, and/or 
reactive oxygen species (ROS) are directly sustained. ROS can 
worsen cisplatin-induced MOMP or directly cause.
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Figure 6: Cisplatin.

Factor Mode of action Relevance References

CTR1 Plasma membrane copper 
transporter.

Downregulated in cancer cell lines resistant to 
CDDP. 

[63-66]CDDP resistance is heightened by CTR1 
depletion. In vitro and in vivo absorption and 
effectiveness of CDDP are improved by copper 

chelators.

ATP7A/ATP7B
Copper-extruding P-type 
ATPases involved in the 

regulation of ion homeostasis

Increased cancer cell lines that are resistant to 
CDDP. The effectiveness of CDDP treatment in 
ovarian cancer patients may be predicted by 

ATP7B expression levels.

[67-70]

MRP2

Member of the ABC family of 
plasma membrane transporters. 

Mediates the ATP-dependent 
cellular efflux of CDDP.

overexpressed in cancer cell lines that are 
CDDP-resistant. CDDP sensitivity is increased 

by antisense cDNA modification. The 
effectiveness of CDDP regimens in patients 
with ESCC and HCC depends on expression 

levels.

[71-75]

GSH/g-GCS/GST

GSH scavenges electrophiles 
and ROS. g-GCS catalyses GSH 
synthesis. GST conjugates GSH 

to CDDP, thus facilitating its 
extrusion.

CDDP-resistant cells often exhibit elevated 
levels of GSH, g-GCS, and GST. No conclusive 

clinical evidence.
[76,77]

Metallothionein’s
Intracellular thiol-containing 
proteins are involved in the 
detoxification of metal ions.

May bind and inactivate CDDP. No conclusive 
clinical evidence. [78,79]

Table 1: Mechanisms of pre-target resistance (article – molecular 1).
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Curcumin: Structure, Chemistry and 
Pharmacokinetics
Diferuloylmethane, often known as curcumin, is an active 
substance that was extracted from the herb Curcuma longa, 
which grows in south and southeast tropical Asia and 
has long been used in traditional Chinese medicine [80]. 
Curcumin is a potential polyphenolic phytonutrient that is 
obtained from the turmeric plant (Curcuma longa) and is 

used to treat various malignancies by chemoprevention [81]. 
Curcumin has the ability to fight cancer, but it also triggers 
a variety of other powerful reactions [82]. Its structure 
(Figure 7) consists of two identical aromatic rings connected 
by a single linear carbon, each of which contains o methoxy 
phenolic groups and a b-unsaturated moiety of b-diketone 
[83].

Figure 7: Chemical structure of curcumin.

Curcumin has limited bioavailability and a restricted 
distribution due to its hydrophobic nature [84]. Before and 
after absorption, curcumin either undergoes transformation 
or degradation [85]. The reactive structure of ingested 
curcumin is primarily responsible for its metabolism. The 
heptad enedione system’s conjugation decrease is mostly 
caused by phase I metabolism, primarily through interaction 
with alcohol dehydrogenase [86]. Phase II metabolic activities 
successfully conjugate curcumin and its reduced metabolites. 
The most typical conjugates are glucuronides and sulphates. 
Glutathione and curcumin frequently interact without the 
use of enzymes, most likely through a Michael-type addition 
[87]. Some of the formulations being researched to increase 
the oral bioavailability of curcumin are meant to slow down 
the rapid metabolic rate. Even at doses as high as 12 g/day, 
curcumin is recognized as a safe substance, and when given 
orally to patients with advanced pancreatic cancer for three 
months, it was well tolerated [88].

Anti-Cancer and Chemo Sensitizing Effects of 
Curcumin
People from Southeast Asian nations were said to have a 
lower risk of developing colon, gastrointestinal, prostate, 
breast, ovarian, and other cancers than Western ones [89].

 Protective Effects of Curcumin against Cisplatin 
Toxicity
Given that peripheral neuropathy affects about one-third of 
CP participants and causes one-fifth of them to stop receiving 
therapy, neurotoxicity (affecting dorsal root ganglia) is one of 
the main adverse effects [90]. Curcumin treatment before and 
in conjunction with CP administration was reported to restore 
plasma neurotensin and greatly improve the histopathology 
of the sciatic nerve in rats [91]. As one of the most often 
documented adverse effects of CP, auditory disorders such 
as tinnitus, a permanent, bilateral, and progressive hearing 
loss, are also common [92-94]. According to a paper, 
dexamethasone and nano-encapsulated curcumin treatment 
dramatically but only partially protected guinea pigs from 
CP-induced ototoxicity. This may be because curcumin has 
antioxidant capabilities. This is because a 10-day course of 
curcumin (100 mg/kg, orally) treatment recovered serum 
urea, creatinine, and MDA levels in CP-treated rats, leading to 
the suggestion that co-administration of curcumin broadens 
the therapeutic window for CP.

Nephroprotective Effects
Signs of nephrotoxicity, such as a decline in glomerular 
filtration rate and an increase in blood urea nitrogen (BUN) 
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and creatinine levels, have reportedly been seen shortly 
after the commencement of CP treatment [95]. CP-induced 
nephrotoxicity has been linked to an increase in ROS levels, 
which in turn led to an increase in the oxidation of lipids, 
proteins, and nucleic acids, as well as a decrease in SOD, 
glutathione peroxidase (GPX), and catalase, all of which 
are known to be crucial components of the antioxidant 
defence. Similarly to this, it was stated that CP-induced 
nephrotoxicity is eliminated when antioxidant medicines 
are also administered. The prevention of mitochondrial 
malfunction and the inflammatory response, the restoration 
of antioxidant enzymes, and the decrease of oxidative stress 
are all ways that curcumin protects the kidneys, according 
to numerous studies. Furthermore, protein transporters, 
including the organic anion transporter (OAT) and organic 
cation transporter (OCT), are crucial for renal secretion, 
the process of delivering medications, poisons, etc. into the 
lumen of nephrons. OAT and OCT expressions that were 
reduced after CP therapy have been shown to be able to be 
restored by curcumin [96].

Effect on Chemotherapy Resistance
A lot of patients do not react to chemotherapy that uses 
cisplatin. Only 20% of individuals respond to immunotherapy, 
and due to genomic sub-typing of tumors, there may be 
significant overlap between those who respond to cisplatin 
and those who respond to immunotherapy. Curcumin is a 
natural bioactive substance that may provide ingredients 
for treating cisplatin-related problems. These substances 
have the power to activate a variety of pathways, all of 
which have the potential to positively or negatively affect 

cisplatin sensitivity. Through the downregulation of Bcl2 
and survivin, curcumin and cisplatin can work together to 
inhibit the development of chemoresistance to cisplatin 
[97]. Cancer stem cells make up a very small portion of the 
tumor population. Due to the stem cell-like characteristics 
of these cells, cytotoxic agent resistance develops, which 
causes cancer to return. These stem cells become sensitive 
to cytotoxic substances like cisplatin because of the 
chemosensitivity actions of polyphenols, particularly 
curcumin. The osteosarcoma (MG63) cell line was used to 
study the co-delivery of curcumin and cisplatin. The findings 
demonstrated that curcumin-cisplatin combination therapy 
decreases the expression of BMIL-1 as well as E-cadherin 
and Notch-1 signaling pathways. It was determined that co-
delivering curcumin and cisplatin can be a better method 
for increasing chemotherapy effectiveness in osteosarcoma 
patients. The effects of curcumin and cisplatin on invasion, 
metastasis, and apoptosis in nasopharyngeal cancer cells 
were examined. The study’s findings demonstrated that the 
combination of curcumin and cisplatin therapy increased 
the expression of the transforming growth factor (TGF)-
1/Smad’s signalling pathway, inducing apoptosis [98]. In 
this context, a study was conducted to determine whether 
cisplatin exposure causes the release of NOX5, which, in turn, 
activates the Akt pathway to produce resistance to cisplatin in 
cancer cells. Delivering curcumin reduces NOX5 expression, 
preventing cisplatin resistance. Thus, curcumin and cisplatin 
combined therapy decrease cisplatin resistance in epithelial 
cancer cells, increasing the effectiveness of chemotherapy 
for the target cancer. The adverse effects of cisplatin are also 
controlled [99].

Figure 8: Molecular models of curcumin enhance cisplatin’s therapeutic effectiveness. The schematic illustration shows how 
curcumin boosts cisplatin’s anticancer effects by inhibiting the expression of excision repair cross-complementation group 1 
(ERCC1) and hypoxia-inducible factor 1-alpha (HIF-1α) proteins.
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Conclusion

This review summarizes the protective effects of curcumin 
against cisplatin (CP)-induced neurotoxicity, ototoxicity, 
and nephrotoxicity, as well as its role in enhancing CP’s 
therapeutic efficacy. Plant-derived natural substances, 
such as curcumin, have been systematically used in cancer 
treatment due to their ability to target multiple cellular 
and molecular aspects of cancer cells with minimal harm. 
Curcumin has been shown to modify key molecular targets, 
potentially reducing the antitumor effectiveness of CP, a 
widely used chemotherapy drug that induces DNA damage 
in cancer cells. However, curcumin’s chemo preventive 
properties affect various tumour-related pathways, targeting 
transcription factors, growth factors, and receptors involved 
in cell proliferation and apoptosis.

Research suggests that combining natural anticancer 
compounds like curcumin with chemotherapy enhances 
therapeutic efficacy while reducing side effects. Despite 
evidence supporting curcumin’s benefits in treating various 
diseases, including cancer, uncertainties remain due to 
the limitations of initial studies. More rigorous research 
is needed to confirm curcumin’s clinical effectiveness. In 
summary, curcumin appears to reduce chemoresistance 
and mitigate CP’s side effects without compromising its 
antitumor properties. Further clinical trials are necessary 
to explore the benefits of new curcumin formulations with 
improved bioavailability and structural analogues.
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