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s-Methods 

Multiple Correspondence Analysis (MCA)  

Multiple correspondence analyses are a generalization of 
correspondence analysis. It is a multivariate technique 
used when there are more than two categorical variables, 
with the purpose to study the association between the 
different categories (e.g. male and female for the variable 
Sex) of all the variables involved in the study to identify 
individuals with similar profiles (i.e. with the highest 
number of common categories). The final outcome is a plot 
that shows the relationships among categories, among 
subjects and among categories and subjects in a two-
dimensional space in order to display the geometric 
configuration of the variable categories. Categories that are 
in the same quadrant or that are close enough suggest an 
association [1]. Substantially, the aim of the MCA is to 
obtain a measure of the association in terms of geometric 
distance so that associated categories are closely displayed 
in the output plot. The geometric distances are based on 
the definition of row and column profiles provided below.  
 

 Variables  

 Sex 
Alcohol 
abuse 

… 
Qth 

variable 
 

Total 

Subjects Male Female Yes No … 𝐽−1 J 

1 0 1 1 0 … 0 1 Q 
2 0 1 0 1 … 1 0 Q 

… … … … … … … … Q 

i 1 0 0 1 … 1 0 Q 

… … … … … … … … Q 

I 1 0 1 0 … 1 0 Q 

Total Z+1 Z+2 Z+3 Z+4  Z+J-1 Z+J Z++ 

Table 1: Multiple correspondence analysis. 
 
In details, based on the following data table of I subjects, Q 
categorical variables and 𝐽 categories (𝐽𝑞 for each variable, 
Σ𝐽𝑞𝑄𝑞=1=𝐽), it is possible to define the following 
quantities:  
- 𝑟𝑖𝑗={0 𝑖𝑓 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑖 ℎ𝑎𝑠 𝑛𝑜𝑡 𝑡ℎ𝑒 𝑗𝑡ℎ 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 1𝑄 𝑖𝑓 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑖 
𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑗𝑡ℎ 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 with Σ𝑟𝑖𝑗𝐼𝑖=1=1 and j=1,…,J  
- 𝑟𝑖=(𝑟𝑖1,𝑟𝑖2,…,𝑟𝑖𝑗,…,𝑟𝑖𝐽)′ row profile and  
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- 𝑐𝑖𝑗={0 𝑖𝑓 𝑡ℎ𝑒 𝑗𝑡ℎ𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 ℎ𝑎𝑠 𝑛𝑜𝑡 𝑏𝑒𝑒𝑛 𝑐ℎ𝑜𝑠𝑒𝑛 𝑏𝑦 𝑡ℎ𝑒 
𝑖𝑡ℎ𝑠𝑢𝑏𝑗𝑒𝑐𝑡1/𝑧+𝑗 𝑖𝑓 𝑡ℎ𝑒 𝑗𝑡ℎ𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 ℎ𝑎𝑠 𝑏𝑒𝑒𝑛 𝑐ℎ𝑜𝑠𝑒𝑛 𝑏𝑦 
𝑡ℎ𝑒 𝑖𝑡ℎ𝑠𝑢𝑏𝑗𝑒𝑐𝑡 - column profile 𝑐𝑗=(𝑐1𝑗,𝑐2𝑗,…,𝑐𝑖𝑗,…,𝑐𝐼𝑗)′.  
 
Since MCA involves individuals and variable, two kind of 
distances can be evaluated (between row profiles, i.e. 
between individuals, and between column profiles, i.e. 
between categories of variables):  
 
a. The distance between two row profiles 𝑟𝑖 𝑎𝑛𝑑 
𝑟𝑖′ of two different subjects is defined as:  
𝑑𝐷2(𝑟𝑖,𝑟𝑖′)=Σ(𝑟𝑖𝑗−𝑟𝑖′𝑗)2𝑟𝑗 ̅𝐽𝑗=1=𝐼𝑄Σ(𝑟𝑖𝑗−𝑟𝑖′𝑗)2𝑧+𝑗 𝐽𝑗=1.  
This distance will be equal to zero if the individuals have 
the same categories and it will increase when the number 
of distinct categories presented by the two subjects 
increases.  
 
b. In a similar way the distance between two 
column profiles 𝑐𝑖𝑗−𝑐𝑖𝑗′ is defined as follows:  
𝑑𝐷2(𝑐𝑗,𝑐𝑗′)=Σ(𝑐𝑖𝑗−𝑐𝑖𝑗′)2𝑐�̅�𝐼𝑖=1=𝐼Σ(𝑐𝑖𝑗−𝑐𝑖𝑗′)2 𝐼𝑖=1 
Consequently, the profiles of the two categories 𝑗 and 𝑗′ will 
be the same when these are shown by the same subjects 
and the distance will increase with the number of 
individuals that show different categories. These distances 
will be displayed in a common unique plot (named Biplot) 

[2] such that the distance between any row profile or 

column profile gives the measure of their similarity (or 
dissimilarity).  
 

Cluster Analysis  

Cluster analysis is a multivariate technique used when all 
the variables of interest are continuous. It allows to 
aggregate n subjects in different groups, named clusters, on 
the basis of their individual data. The main goal is to find 
an optimal grouping so that the observations within the 
same cluster are similar (minimizing distance within 
clusters) and dissimilar from the observations in the other 
clusters (maximizing distance between clusters) [1].  
 
There exist two main approaches of clustering: hierarchical 
and non-hierarchical: 
The first approach is a “data-driven” process that may be 
aggregative (if it starts from n different clusters, one for 
each subject, and ends with only one: a single cluster 
containing all the observations) or divisive (if it does the 
opposite: starting from an unique group and ending with n 
different groups) [1]. On the contrary, the non-hierarchical 
approach may be defined “hypothesis-driven” since the 
number of clusters is defined a priori by the researcher. 
Among these two approaches there are different 
techniques that can be applied. In this paper we present the 
Ward’s method (hierarchical aggregative, known also as 
incremental sum of squares method) and the k-means (non-
hierarchical). Ward’s method uses the within and between 

clusters squared distances: the two clusters that minimize 
the increase in the sum of squared errors (i.e. minimize the 
between-cluster distance) are melted together. The k-
means method is based on the number of clusters, fixed a 
priori, and on the distances of each subject from the cluster 
means’ vector (centroids). It is an iterative procedure that 
allows subjects reallocation in different clusters (not 
possible with hierarchical methods) and it ends when no 
subject is reallocated.  
 
The main aim of cluster analysis is to identify the 
observations (subjects) that are similar and to group them 
into clusters. A numerical measure that is generally used to 
evaluate proximity between subjects (and so if two 
observations are similar or not) is the distance. One of the 
most used distances is the Euclidean one defined as:  
𝑑(𝑥𝑟,𝑥𝑠)=[(𝑥𝑟−𝑥𝑠)′(𝑥𝑟−𝑥𝑠)]1/2=[Σ(𝑥𝑟𝑗−𝑥𝑠𝑗)2𝑝𝑗=1]1/2  
Where p is the number of variables, 𝑥𝑟, are the p-
dimensional observation vectors for the subjects r and s 
and 𝑥𝑟𝑗 and 𝑥𝑠𝑗 are the values of the jth variable for the 
subjects r and s.  
Each cluster is specified by its centroid, i.e. the cluster mean 
vector: 𝐶𝐺=(𝑋𝐺1̅̅̅̅̅̅̅̅̅,̅𝑋𝐺2̅̅̅̅̅̅̅̅̅,̅… ,𝑋𝐺�̅̅̅̅̅� ) 
Where 𝑋𝐺�̅̅̅̅� is the mean of the ith variable in cluster G, with 
1≤𝑖≤𝑝.  
The algorithms of the two (hierarchical and non-
hierarchical) approaches, with a particular attention to the 
specific methods used in the manuscript (Ward’s method 
and k-means) are reported below.  
 
 
Hierarchical approach Preliminar steps: 
a. Choice of the dissimilarity measure of the clustering 

method. 
b. Calculation of the dissimilarity between each pair of 

subjects or clusters. 
 
After the preliminary steps, an agglomerative or a divisive 
algorithm is chosen. Here only the agglomerative one is 
presented (since it is the one used in the paper analysis. 
 
Hierarchical agglomerative clustering algorithm:  
a. Start with n clusters, one for each object;  
b. The two most similar clusters are searched and are melt 

into a new cluster;  
c.  Evaluation of similarity (or dissimilarity) between the 

new clusters and other clusters;  
d. Repeat until you have only one cluster with n objects.  
 
A possible choice for the measuring the similarity between 
clusters is given by the Ward’s method that minimizes the 
sum of the squared distances of points from their cluster 
mean vector (centroid). In details, it uses the within and 
between-clusters distances and join the two clusters A (of 
size 𝑛𝐴) and B (of size 𝑛𝐵) that minimize the increase 𝐼𝐴𝐵 
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in the sum of squared errors (SSE): 
𝐼𝐴𝐵=𝑆𝑆𝐸𝐴𝐵−(𝑆𝑆𝐸𝐴+𝑆𝑆𝐸𝐵) where 
𝑆𝑆𝐸𝐴=Σ(𝑦𝑖−𝑦𝐴 ̅̅̅)′(𝑦𝑖−𝑦𝐴 ̅̅̅)𝑛𝐴𝑖=1, 
SS𝐸𝐵=Σ(𝑦𝑖−𝑦�̅̅̅�)′(𝑦𝑖−𝑦�̅̅̅�)𝑛𝐵𝑖=1 and 
𝑆𝑆𝐸𝐴𝐵=Σ(𝑦𝑖−𝑦𝐴�̅̅̅̅̅�)′(𝑦𝑖−𝑦𝐴�̅̅̅̅̅�)𝑛𝐴𝐵𝑖=1; with 𝑦𝐴 ̅̅̅,𝑦�̅̅̅� 𝑎𝑛𝑑 𝑦𝐴𝐵 ̅̅̅̅̅ 
being the mean vectors of cluster A, B and the new joint 
cluster AB. [1]  
 
The result of the hierarchical approach is displayed in a 
plot called dendrogram: a tree diagram representing all the 
procedure steps including the distances at which clusters 
are joined. The leaves of the tree represent the subjects 
while the y-axis (height of the dendrogram) is simply the 
value of the distance metric between clusters. The number 
of clusters is defined by cutting (through a horizontal line) 
the dendrogram at a specific height.  
 
Non-hierarchical approach K-means algorithm:  
a. Choice of the dissimilarity measure. 
b. Choice of the number of clusters. 
c. First random partition of the objects in the k clusters. 
d. Calculation of the k centroids. 
e. Evaluation of the distances between each object and 

each centroid. 
f. Reallocation of every object in the cluster with the 

nearest centroid 
g. If at least one object has been moved, go back to point 4; 

else go to point 8. 
h. Stop.  
 

Principal Component Analysis (PCA)  

Principal component analysis is a data-reduction 
technique that can be used to reduce a large set of 
correlated continuous variables 𝑋=(𝑋1,𝑋2,…,𝑋𝑝) into a 
smaller set of uncorrelated ones, i.e. the principal 
components 𝑃𝐶𝑗,𝑗<𝑝, that still contain most of the 
information of the original set of variables. This technique 
is based on a constrained optimization problem that aims 
to find a linear combination of variables that maximizes the 
amount of data variability explained. Each PC is derived in 
decreasing order for the amount of data variability 
explained (therefore the first one has the highest amount 
of explained variance). The main aim of PCA is to find a 
reduced number of linear combinations of the observed 

variables which explain most of the variance in the data [3].  

 
Let’s suppose to have 𝑋=(𝑋1,𝑋2,…,𝑋𝑝), a p-dimensional 
vector of continuous variables with mean μ and covariance 
matrix Σ. The jth principal component is defined as a linear 
combination of the variables:  
𝑃𝐶𝑗=𝑎𝑗1𝑋1+𝑎𝑗2𝑋2 +⋯+𝑎𝑗𝑝𝑋𝑝=𝑎𝑗′𝑋,  
Where 𝑎𝑗=(𝑎𝑗1,…,𝑎𝑗𝑝) is a p-dimensional vector of 
loadings.  
 

The purpose is to find the loading vector 𝑎𝑗 that maximizes 
the variance of the linear combination (𝑃𝐶𝑗)=𝑎𝑗′𝛴𝑎𝑗 under 
the constraint that 𝑎𝑗′𝑎𝑗=1, i.e. to solve the following 
constrained maximum problem  
{max𝑎 𝑎𝑗′𝛴𝑎𝑗 𝑎𝑗′𝑎𝑗=1𝑎𝑗′𝑎𝑗−1=𝑎𝑗−1̅̅̅̅̅′𝑎𝑗=0 with 𝑗=2,…, (for 
𝑗=1 the second constraint disappear) by using Lagrange 

multipliers method [4]. The Constrains ensure 

orthogonality among the PCs.  
 
A good way to represent graphically PCA results is the 
biplot that shows simultaneously the variables 
(represented by arrows) and the subjects (represented by 
points) on a two (or three) axes plot. The axes are given by 
the first two (or three) PCs. The accuracy of the 
representation is proportional to the total variance 

extracted by the depicted components [5]. As in the MCA 
plot, also for the PCA the association is detected in terms of 
geometrical distance, so that the variables (arrows) are 
associated to the closer subject’s subgroup.  
 

Partial Least Square Discriminant Analysis 
(PLS-DA)  

Partial Least Square Discriminant Analysis is a 
classification technique that combines a Partial Least 
Square Regression (PLS-R) and Linear Discriminant 
Analysis (LDA); in particular, the PLS-DA is a PLS-R in 
which the dependent variable is categorical. PLS-R is a 
method that at the same time allows dimension reduction 
and the fit of a regression model. It is an approach similar 
to PCA but, instead of a computation of a new variable (the 
principal component), a categorical response variable is 

used [6]. LDA is a method whose purpose is to find a linear 

combination that allows discriminating two or more 
groups maximizing their separation. 
 
Therefore, PLS-DA provides a dimension reduction in a 
discriminant application maximizing among-groups 

variability [7]. Formally, PLS-R is based on a regression 
model between the data matrix 𝑋 and the vector of 
categories (the group variable) 𝑐. The fundamental 
equations of PLS-DA are the following: 𝑋=𝑇𝑃+𝐸 𝑐=𝑇𝑞+𝑓 
where 𝑇 is the score matrix, 𝐸 and 𝑓 are the residuals and 
𝑃 and 𝑞 are respectively the loadings of 𝑋 and of 𝑐 (for more 

details see [8]).  

 
Once the model is built the class membership can be 
predicted through the equation  
�̂�=𝑥𝛽, where 𝛽 is the regression coefficient vector.  
 
Therefore, a generic subject will be classified i.e. assigned 
to a category on the basis of the estimated value of c (and 
it will be assigned to the category with the nearest value). 
The main advantage of PLS-DA, compared to linear 
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discriminant analysis, is that it can provide also variables 
loadings (represented by a bar plot) that allow to identify 
not only the group a subject belongs to, but also which 
variables are more helpful to discriminate the subjects in 

the different classes [8].  
 

Classification Trees (CART)  

Classification trees are one of the most popular machine 
learning algorithms that belong to the family of decision 
trees, that can be used for both classification and 
regression purpose. CART are models in which the 
dependent variable (variable that has to be predicted) is 
categorical and the independent ones (covariates) can be 
categorical or quantitative. Classification trees are directed 
graphs in which there is an initial node that branches too 
many. Each node represents an independent variable, each 
edge corresponds to a decision rule and each leaf 
represents an outcome (a value of the predicted variable). 
The top node contains the entire sample that is 
consequently divided into different subsets. If the 
covariates are quantitative splits are created on the basis 
of some cut-offs on a scale; if the covariates are categorical, 

splits are based on the different categories [9]. After 

computing the entire tree (with all the independent 
variables) some techniques have to be used to reduce tree 
dimension and to improve the tree predictive power, 
reducing over fitting. Among these, one of the most used is 
pruning [10], a method that allows to remove the variables 
that do not contribute (are not significantly associated) to 
the final outcome, considering a penalty for the increase of 
parameters in the model]. 
 
Therefore, the final tree shows only the independent 
variables that are significant predictors of the dependent 
one (outcome) and, differently from the traditional 
regression models, those that are not predictors do not 
influence the final result. The classification trees can be 
built by a recursive partitioning program using a two-stage 
procedure [11]. 
a. The variable which best splits the data into groups (i.e. 

with the greatest association with the dependent 
variable) is found. The subjects are divided and this 
process is repeated separately to each subject subgroup 
recursively until the subgroups either reach a minimum 
size or until no improvement (in terms of predictive 
performance) can be made. 

b. A cross-validation (pruning) will be performed to trim 
the full tree, since the full model is quite certainly too 
complex and over fitted.  

 
 
 
 

s-Code 

Multiple Correspondence Analysis 

> data<- read.csv ("file.csv", sep=";", header=T) # read the 
data  
> data_mca<-data [ , c(a, b, c,…)] #It takes all the rows of 
data and the columns a, b, c,… that are the columns of the 
categorical variables you want to analyze. Be careful: 
data_mca has to contain only categorical variables.  
> library (FactoMineR) #If you don’t have this package, 
install it with install.packages(“FactoMineR”) . 
> mcadat<-MCA(data_mca, graph=F, na.method = 
“Average”) #It performs a Multiple Correspondence 
Analysis. 
> cats <- apply(data_mca, 2, function(x) 
nlevels(as.factor(x)))  
> mca_vars_df <- data.frame(mcadat$var$coord, Variable = 
rep(names(cats), cats))  
> mca_obs_df <- data.frame(mcadat$ind$coord)  
#To display the MCA results you can use ggplot function (of 
the library ggplot2) applied to the mcadat object.  
library(ggplot2̅̅̅̅̅) #If you don’t have this package install it 
with install.packages(“ggplot2̅̅̅̅̅”)  
> ggplot(data = mca_obs_df, aes(x = Dim.1, y = Dim.2)) + 
geom_hline (yintercept = 0, colour = "gray70") +  
geom_vline (xintercept = 0, colour = "gray70") + 
geom_point (colour = "gray50", alpha = 0.7,size=4) +  
geom_text (data = mca_vars_df, aes(x = Dim.1, y = Dim.2, 
label = rownames(mca_vars_df), colour = Variable), 
size=5.5) + ggtitle ("MCA plot - Variables and Subjects") + 
scale_colour_discrete (name = "Variables") + 
theme(plot.title=element_text (size=20,face="bold"), 
legend.text=element_text (size=15), legend. 
title=element_text (size=17), axis.title=element_text 
(size=15), axis.line=element_line (size=1, colour=  
"black"), panel.grid.major=element_line (colour = 
"#d3d3d3"), panel.grid.minor=element_blank (), 
panel.border= element_blank (), panel.background = 
element_blank ()). 
 

Cluster Analysis  

> data_clus<-data [ , c(a,b,c,…)] #data_clus must contain 
only continuous variables and the group variable (in  
our case, diagnosis) and must not contain missing values.  
> data_clus<-as.matrix (data_clus). 
 
#Hierarchical approach – Ward’s method: 
> hc=hclust (dist (data_clus[ ,-1̅̅̅̅̅]), method=”ward.D”) #it 
performs hierarchical clustering. The object data_clus [ , -
1] is a matrix containing only continuous variables (i.e. the 
group variable in the first column has been excluded)  
> dhc=as.dendrogram(hc)  
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#To assign the labels of dendrogram object with new colors:  
> data_clus$Group[which(data_clus$Group==1)]<-“A” 
#(In our case A and B are BPD and BD patients)  
> data_clus$Group[which(data_clus$Group ==2)]<-“B”  
> colorCodes<- c(A=”red”, B=”blue”)  
> library(dendextend) #If you don’t have this package, 
install it with install.packages(“dendextend”)  
> labels_colors(dhc)<-
colorCodes[data_clus$Group][order.dendrogram(dhc)]  
> plot (dhc, main=”Hierarchical clustering approach – 
Ward’s method”, ylab=”Height”, size= 2̅̅̅̅̅)  
> legend (“topright”, legend = c(“A” , “B”), col = c(“red”, 
“blue”), pch = c(2̅̅̅̅̅0,2̅̅̅̅̅0,4,4,4), bty = “n”, pt.cex = 1̅̅̅̅̅.5, cex = 
0.8, text.col = “black”, horiz = FALSE, inset = c(0.1̅̅̅̅̅, 0.1̅̅̅̅̅)). 
  
#Non hierarchical approach- k-means method: 
> library(cluster)  #If you don’t have this package, install it 
with install.packages(“cluster”)  
> set.seed (123)   #It fixes the seed of the random 
number generator in order to have reproducible results.  
> clus <- kmeans(data_clus[.-1], 2, iter.max = 50)  
 #It performs k-means method  
> clus$centers     #It provides 
clusters centroids (variables mean in each cluster)  
> clus$size #It provides clusters size (number of subjects 
in each cluster)  
> table (clus$cluster, data_clus$Group)  #It provides a 
frequency table in which rows represent cluster allocation 
and columns represent the group categories  
 
#To plot the results:  
>clusplot (data_clus, clus$cluster, color=T, shade=F, 
labels=5, lines=2, col.p=as.character(data_clus$Group), 
col.clus = c(“red”, “blue”), main=”Non-hierarchical 
clustering approach – k-means method”)  
> legend (“topleft”, bty = “n”, legend=c(“Cluster 1̅̅̅̅̅”, “Cluster 
2̅̅̅̅̅”), pch=c(1̅̅̅̅̅,2̅̅̅̅̅), cex=0.8). 
 

Principal Component Analysis  

> pca<-prcomp (data_clus[ , -1], center=T, scale=T) #It 
performs a principal component analysis. 
 
#To plot the results of PCA:  
> Library (pca3d) #If you don’t have this package install it 
with install.packages (“pca3d”)  
> Library (rgl) #If you don’t have this package install it with 
install.packages (“rgl”)  
>pca3d (pca, group=as.factor (data_clus$Group), 
biplot=TRUE, biplot.vars=3, show.ellipses=F, palette=c 
(“red, “blue”))  
> legend3d (“right”, legend=c(“A”,”B”),pch=c(1̅̅̅̅̅7,1̅̅̅̅̅9), 
col=c(“red, “blue”), cex=1̅̅̅̅̅.5). 
 
 

Partial Least Squares Discriminant Analysis 

> library(mixOmics) #If you don’t have this package, install 
it with install.packages(“mixOmics”)  
> dis= splsda(data_clus[,-1], data_clus$Group, ncomp = 3)  
> plotLoadings (dis, comp = 1̅̅̅̅̅, method = ‘median’, 
size.name=1̅̅̅̅̅.5, legend.title=”Group”, legend.color=  
c(“red”, “blue”), size.legend=1̅̅̅̅̅.2̅̅̅̅̅, contrib=’max’, xlim=c(-
0.6,0.6), title=”Loading vectors – PLS-DA”). 
 

Classification Trees 

> Library (rpart) #If you don’t have this package, install it 
with install.packages (“rpart”)  
> Library (rpart.plot) #If you don’t have this package, 
install it with install.packages (“rpart.plot”)  
> Tree=rpart(Group~V1̅̅̅̅̅+V2̅̅̅̅̅+… +Vj, method =”class”, 
data=data) #V1, V2, …, Vj are the names of the independent 
variables; Group is the dependent one.  
> rpart.plot(tree, extra=4, type=5, box.palette=c(“red”, 
“blue”), main=”Decision tree”). 
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